cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004443 Nimsum n + 2.

Original entry on oeis.org

2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 18, 19, 16, 17, 22, 23, 20, 21, 26, 27, 24, 25, 30, 31, 28, 29, 34, 35, 32, 33, 38, 39, 36, 37, 42, 43, 40, 41, 46, 47, 44, 45, 50, 51, 48, 49, 54, 55, 52, 53, 58, 59, 56, 57, 62, 63, 60, 61, 66, 67, 64, 65
Offset: 0

Views

Author

Keywords

Comments

A self-inverse permutation of the natural numbers. - Philippe Deléham, Nov 22 2016

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Crossrefs

Essentially the same as A256008 - 1.
Also the second column of A274528.
Cf. A002162.

Programs

  • Maple
    nimsum := proc(a,b) local t1,t2,t3,t4,l; t1 := convert(a+2^200,base,2); t2 := convert(b+2^200,base,2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%),list); l := convert(t4,base,2,10); sum(l[k]*10^(k-1), k=1..nops(l)); end;
    f := n -> n + 2*(-1)^floor(n/2); # N. J. A. Sloane, Jul 06 2019
  • Mathematica
    Table[BitXor[n, 2], {n, 0, 100}] (* T. D. Noe, Feb 09 2013 *)
  • PARI
    a(n)=bitxor(n,2) \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    for n in range(20): print(2^n) # Oliver Knill, Feb 16 2020

Formula

a(n) = n XOR 2. - Joerg Arndt, Feb 07 2013
G.f.: (2-x-2x^2+3x^3)/((1-x)^2(1+x^2)). - Ralf Stephan, Apr 24 2004
The sequences 'Nimsum n + m' seem to have the general o.g.f. p(x)/q(x) with p, q polynomials and q(x) = (1-x)^2*Product_{k>=0} (1+x^(2^e(k))), with Sum_{k>=0} 2^e(k) = m. - Ralf Stephan, Apr 24 2004
a(n) = n + 2(-1)^floor(n/2). - Mitchell Harris, Jan 10 2005
a(n) = OR(n,2) - AND(n,2). - Gary Detlefs, Feb 06 2013
E.g.f.: 2*(sin(x) + cos(x)) + x*exp(x). - Ilya Gutkovskiy, Jul 01 2016
Sum_{n>=0,n<>2} (-1)^n/a(n) = -log(2) = -A002162. - Peter McNair, Aug 07 2023