A004539 Expansion of sqrt(2) in base 2.
1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1
Offset: 1
Examples
1.0110101000001001111001...
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- B. Adamczewski and N. Rampersad, On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc. 136 (2008), 3105-3109.
- David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux, 16 (2004), 487-518.
- R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2), Mathematics Magazine, Volume 43, Pages 143-145, 1970. Zbl 201.04705.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Richard Isaac, On the simple normality to base 2 of the square root of s, for s not a perfect square., arXiv:math/0512404 [math.NT], 2005-2006.
- Jason Kimberley, Index of expansions of sqrt(d) in base b
- Thomas Stoll, On families of nonlinear recurrences related to digits, Journal of Integer Sequences 8 (2005), 05.3.2.
- Thomas Stoll, On a problem of Erdős and Graham concerning digits, Acta Arithmetica 125 (2006), pp. 89-100.
- Thomas Stoll, A fancy way to obtain the binary digits of 759250125 sqrt{2}, (2009), Amer. Math. Monthly, 117 (2010), 611-617.
- Joseph Vandehey, On the binary digits of sqrt(2), arXiv:1711.01722 [math.NT], 2017.
- Eric Weisstein's World of Mathematics, Wolfram's Iteration
- Eric Weisstein's World of Mathematics, Pythagoras's Constant
Programs
-
Haskell
a004539 n = a004539_list !! (n-1) a004539_list = w 2 0 where w x r = bit : w (4 * (x - (4 * r + bit) * bit)) (2 * r + bit) where bit = head (dropWhile (\b -> (4 * r + b) * b < x) [0..]) - 1 -- Reinhard Zumkeller, Dec 16 2013
-
Mathematica
N[Sqrt[2], 200]; RealDigits[%, 2] RealDigits[Sqrt[2],2,120][[1]] (* Harvey P. Dale, Aug 03 2024 *)
-
PARI
binary(sqrt(2)) \\ Michel Marcus, Nov 06 2017
-
PARI
a(n) = floor(quadgen(8)<<(n-1))%2; \\ Chittaranjan Pardeshi, Sep 09 2024
-
bc
obase=2 scale=200 sqrt(2)
Formula
a(k) = floor(Sum_{n>=1} A005875(n)/exp(Pi*n/(2^((2/3)*k+(1/3))))) mod 2. Will give the k-th binary digit of sqrt(2). A005875 : number of ways to write n as sum of 3 squares. - Simon Plouffe, Dec 30 2023
Comments