cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A004540 Expansion of sqrt(2) in base 3.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 1, 2, 2, 1, 2, 2, 2, 0, 0, 1, 2, 1, 2, 2, 1, 2, 2, 2, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 2, 0, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 2, 0, 1, 2, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 2, 0, 2, 1, 2, 1, 0, 0, 2, 0, 2, 0, 0, 2, 1, 2, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(2*3^200), 3))); // Vincenzo Librandi, Jan 07 2018
  • Mathematica
    RealDigits[Sqrt[2],3,120][[1]] (* Harvey P. Dale, Sep 20 2016 *)

A004559 Expansion of sqrt(5) in base 6.

Original entry on oeis.org

2, 1, 2, 2, 5, 5, 3, 5, 5, 3, 1, 5, 1, 3, 0, 3, 3, 4, 3, 1, 2, 4, 5, 1, 4, 3, 2, 0, 3, 4, 0, 2, 4, 0, 1, 3, 4, 5, 4, 0, 2, 5, 2, 1, 3, 2, 2, 3, 2, 0, 3, 3, 2, 5, 0, 2, 1, 5, 4, 4, 1, 1, 0, 1, 3, 2, 1, 5, 5, 0, 1, 0, 0, 0, 4, 5, 3, 1, 4, 1, 1, 2, 5, 1, 4, 2, 5, 0, 0, 0, 0, 1, 1, 3, 4, 5, 1, 3, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(5*6^200), 6))); // Vincenzo Librandi, Jan 08 2018
  • Mathematica
    RealDigits[Sqrt[5],6,120][[1]] (* Harvey P. Dale, Mar 24 2012 *)

Extensions

Updated by Alois P. Heinz at the suggestion of Kevin Ryde, Feb 19 2012

A004553 Expansion of sqrt(3) in base 8.

Original entry on oeis.org

1, 5, 6, 6, 6, 3, 6, 5, 6, 4, 1, 3, 0, 2, 3, 1, 2, 5, 1, 6, 3, 5, 4, 4, 5, 3, 5, 0, 2, 6, 5, 6, 0, 3, 6, 1, 3, 4, 0, 7, 3, 4, 2, 2, 2, 2, 7, 3, 0, 1, 5, 1, 4, 6, 1, 2, 3, 6, 6, 4, 4, 3, 6, 3, 0, 6, 1, 6, 2, 0, 2, 4, 6, 2, 2, 0, 6, 7, 1, 0, 5, 5, 1, 5, 6, 1, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    d:= 3; m:=8; Prune(Reverse(IntegerToSequence(Isqrt(d*m^100), m))); // G. C. Greubel, Mar 31 2018
  • Mathematica
    RealDigits[Sqrt[3],8,120][[1]] (* Harvey P. Dale, Mar 04 2013 *)

Extensions

More terms from Jon E. Schoenfield, Mar 11 2018
Showing 1-3 of 3 results.