cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A340127 Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).

Original entry on oeis.org

1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
Offset: 1

Views

Author

Artur Jasinski, Jan 15 2021

Keywords

Examples

			1.0049603239222975589937496248102521847955102941880228801995283785215071277...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[Z[5, 4, 2]]

Formula

Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021

A340628 Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
Offset: 1

Views

Author

Artur Jasinski, Jan 13 2021

Keywords

Examples

			1.009935934829401027349038488241778167715858547548801013...
		

Crossrefs

Programs

  • Maple
    evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
    $MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5,4,4]/Z[5,4,2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
    digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
    cl[x_] :=I(PolyLog[2,(-1)^x] - PolyLog[2,-(-1)^(1-x)]);
    A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
    digitize[A340628] (* Peter Luschny, Jan 23 2021 *)

Formula

Equals 6*sqrt(5)/(13*A340629).
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals A340127^2/A340809. - R. J. Mathar, Jan 22 2021
Equals Sum_{q in A004618} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

Extensions

Corrected and more terms from Vaclav Kotesovec, Jan 15 2021

A340809 Decimal expansion of Product_{primes p == 4 (mod 5)} 1/(1-p^(-4)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 9, 2, 2, 6, 1, 5, 8, 1, 0, 2, 5, 7, 5, 1, 4, 1, 6, 8, 8, 0, 4, 1, 4, 3, 8, 4, 7, 1, 5, 4, 7, 5, 1, 1, 0, 1, 0, 4, 0, 4, 7, 9, 5, 3, 7, 1, 9, 6, 9, 8, 8, 5, 0, 4, 3, 5, 5, 0, 0, 7, 5, 8, 3, 4, 2, 2, 9, 7, 8, 6, 8, 4, 8, 4, 7, 9, 5, 5, 1, 5, 3, 2, 0, 9, 8, 4, 2, 4, 8, 7, 4, 4, 6, 6, 5, 2, 9, 9, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 22 2021

Keywords

Comments

Equals also the same product over the primes p==9 (mod 10).

Examples

			1.0000092261581025751416880414384715475110104...
		

Crossrefs

Formula

Equals A340127 ^2/A340628
Equals Sum_{k>=1} 1/A004618(k)^4. - Amiram Eldar, Jan 24 2021

Extensions

More digits from Vaclav Kotesovec, Jan 22 2021

A381159 Numbers whose prime divisors all end in the same digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 53, 59, 61, 64, 67, 69, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 117, 119, 121, 125, 127, 128, 129, 131, 137, 139, 149, 151, 157, 159, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Keywords

Comments

51st All-Russian Mathematical Olympiad for Schoolchildren. Problem. Let us call a natural number "lopsided" if it is greater than 1 and all its prime divisors end with the same digit. Is there an increasing arithmetic progression with a difference not exceeding 2025, consisting of 150 natural numbers, each of which is "lopsided"? (A. Chironov)
All powers of primes (A000961) are terms.

Examples

			16, 69, 117 are included in the sequence because 16 = 2*2*2*2, 69 = 3*23, 117 = 3*3*13.
		

Crossrefs

Union of A004618 (9), A004618 (3), A090652 (7), A004615 (1), A000351 (5), and A000079 (2).
Union of A000961 and A380758.

Programs

  • Maple
    q:= n-> nops(map(p-> irem(p, 10), numtheory[factorset](n)))<2:
    select(q, [$1..250])[];  # Alois P. Heinz, Feb 15 2025
  • Mathematica
    q[n_] := SameQ @@ Mod[FactorInteger[n][[;; , 1]], 10]; Select[Range[2, 180], q] (* Amiram Eldar, Feb 16 2025 *)
  • PARI
    isok(k) = if (k==1, 1, my(f=factor(k)); #Set(vector(#f~, i, f[i, 1] % 10)) == 1); \\ Michel Marcus, Feb 16 2025
    
  • Python
    from sympy import factorint, isprime
    def ok(n): return n == 1 or isprime(n) or len(set(p%10 for p in factorint(n))) == 1
    print([k for k in range(1, 180) if ok(k)]) # Michael S. Branicky, Feb 16 2025
Showing 1-4 of 4 results.