cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004697 a(n) = floor(Fibonacci(n)/4).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 5, 8, 13, 22, 36, 58, 94, 152, 246, 399, 646, 1045, 1691, 2736, 4427, 7164, 11592, 18756, 30348, 49104, 79452, 128557, 208010, 336567, 544577, 881144, 1425721, 2306866, 3732588, 6039454
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A079962. - Mircea Merca, Jan 04 2011

Crossrefs

See A000045 for the Fibonacci numbers.
Cf. A079962.

Programs

  • Magma
    [Floor(Fibonacci(n)/4): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
    
  • Maple
    A004697 := proc(n) floor(combinat[fibonacci](n)/4) ; end proc:
  • Mathematica
    CoefficientList[Series[x^5/((1-x)*(1-x-x^2)*(1+x^2+x^4)),{x,0,50}],x] (* Vincenzo Librandi, Jul 09 2012 *)
    Floor[Fibonacci[Range[0,50]]/4] (* or *) LinearRecurrence[ {2,-1,1,-1,1,0,-1},{0,0,0,0,0,1,2},50] (* Harvey P. Dale, Dec 05 2012 *)
  • PARI
    vector(50, n, n--; fibonacci(n)\4) \\ G. C. Greubel, Oct 09 2018

Formula

G.f.: x^5 / ((1-x)*(1-x-x^2)*(1+x^2+x^4)).
From Mircea Merca, Jan 04 2011: (Start)
a(n) = floor(Fibonacci(n)/4).
a(n) = ceiling(Fibonacci(n)/4-3/4).
a(n) = round(Fibonacci(n)/4-3/8).
a(n) = Sum_{k=1..n-2} round(Fibonacci(n)/4).
a(n) = a(n-6) + Fibonacci(n-3), n > 5. (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-7). - R. J. Mathar, Jan 08 2011
a(n) = (A000045(n) - A079343(n))/4. - R. J. Mathar, Jul 14 2012