cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286311 a(n) = 2*a(n-1) - a(n-2) + a(n-4), n>3, a(0)=0, a(1)=a(2)=1, a(3)=3.

Original entry on oeis.org

0, 1, 1, 3, 5, 8, 12, 19, 31, 51, 83, 134, 216, 349, 565, 915, 1481, 2396, 3876, 6271, 10147, 16419, 26567, 42986, 69552, 112537, 182089, 294627, 476717, 771344, 1248060, 2019403, 3267463, 5286867, 8554331, 13841198, 22395528, 36236725, 58632253, 94868979
Offset: 0

Views

Author

Paul Curtz, May 06 2017

Keywords

Comments

Difference table for a(n):
0, 1, 1, 3, 5, 8, 12, 19, 31, 51, 83, 134, 216, ...
1, 0, 2, 2, 3, 4, 7, 12, 20, 32, 51, 82, 133, ...
-1, 2, 0, 1, 1, 3, 5, 8, 12, 19, 31, 51, 83, ...
3, -2, 1, 0, 2, 2, 3, 4, 7, 12, 20, 32, 51, ...
etc.
The pair a(n) = 0, 1, 1, 3, 5, 8, 12, 19, 31, 51, ...
and b(n) = 0, 2, 2, 3, 4, 7, 12, 20, 32, 51, ...
is interesting. a(n) and b(n) are autosequences of the first kind (see Link). a(n) and b(n) have the same first trisection: 3*A001076(n).
a(n) + b(n) = A022086(n) = 3*A000045(n) (Fibonacci).
b(n) - a(n) = 0, 1, 1, 0, -1, -1, 0, ... = A128834(n).
a(n+6) - a(n) = b(n+6) - b(n) = 6*Fib(n+3).
a(n) - a(n) mod 9 = 9*A004699(n) = b(n) - b(n) mod 9.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,3]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1}, {0, 1, 1, 3}, 40] (* or *)
    CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x + x^2) (1 - x - x^2)), {x, 0, 39}], x] (* Michael De Vlieger, May 07 2017 *)
  • PARI
    concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x + x^2)*(1 - x - x^2)) + O(x^60))) \\ Colin Barker, May 06 2017
    

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-4). Valid for b(n).
G.f.: x*(1 - x + 2*x^2) / ((1 - x + x^2)*(1 - x - x^2)). - Colin Barker, May 06 2017

Extensions

More terms from Colin Barker, May 06 2017

A214286 a(n) = floor(Fibonacci(n)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 7, 12, 20, 33, 53, 87, 141, 228, 369, 597, 966, 1563, 2530, 4093, 6624, 10717, 17341, 28059, 45401, 73461, 118862, 192324, 311187, 503511, 814698, 1318209, 2132907, 3451116, 5584024, 9035140, 14619165
Offset: 0

Views

Author

Vincenzo Librandi, Jul 10 2012

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Fibonacci(n)/7): n in [0..40]];
    
  • Mathematica
    Floor[Fibonacci[Range[0, 40]]/7] (* modified by G. C. Greubel, May 22 2019 *)
    LinearRecurrence[{1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1},{0,0,0,0,0,0,1,1,3,4,7,12,20,33,53,87,141,228},50] (* Harvey P. Dale, Dec 01 2020 *)
  • PARI
    vector(40, n, n--; fibonacci(n)\7 ) \\ G. C. Greubel, May 22 2019
    
  • Sage
    [floor(fibonacci(n)/7) for n in (0..40)] # G. C. Greubel, May 22 2019

Formula

G.f.: x^6*(1+x^2+x^5+x^6+x^7+x^9+x^10) / ( (1-x-x^2)*(1-x^16) ). - R. J. Mathar, Jul 14 2012
a(n) = (A000045(n) - A105870(n))/7. - R. J. Mathar, Jul 14 2012
Showing 1-2 of 2 results.