A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Gérard P. Michon, On the number of cubefree integers not exceeding N.
- Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
- Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint, arXiv:1511.03860 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Cubefree.
Crossrefs
Programs
-
Haskell
a004709 n = a004709_list !! (n-1) a004709_list = filter ((== 1) . a212793) [1..] -- Reinhard Zumkeller, May 27 2012
-
Maple
isA004709 := proc(n) local p; for p in ifactors(n)[2] do if op(2,p) > 2 then return false; end if; end do: true ; end proc:
-
Mathematica
Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
-
PARI
{a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( c
vecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */ -
Python
from sympy.ntheory.factor_ import core def ok(n): return core(n, 3) == n print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
-
Python
from sympy import mobius, integer_nthroot def A004709(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
Formula
A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022
Comments