cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004730 Numerator of n!!/(n+1)!! (cf. A006882).

Original entry on oeis.org

1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004731 (denominator), A006882 (double factorials).

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a004730 n = a004730_list !! n
    a004730_list = map denominator ggs where
       ggs = 1 : 2 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
    -- Reinhard Zumkeller, Dec 08 2011
    
  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [ Numerator(DoubleFactorial(n) / DoubleFactorial(n+1)): n in [0..35]]; // Vincenzo Librandi, Dec 03 2018
    
  • Mathematica
    Numerator[#[[1]]/#[[2]]&/@Partition[Range[0,40]!!,2,1]] (* Harvey P. Dale, Jan 22 2013 *)
    Numerator[CoefficientList[Series[(1 - Sqrt[1 - c^2] + ArcSin[c])/(c Sqrt[1 - c^2]),{c, 0, 39}], c]] (* Eugene d'Eon, Nov 01 2018 *)
  • PARI
    f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
    a(n) = numerator(f(n)/f(n+1)); \\ Michel Marcus, Feb 09 2025
  • Python
    from sympy import gcd, factorial2
    def A004730(n):
        a, b = factorial2(n), factorial2(n+1)
        return a//gcd(a,b) # Chai Wah Wu, Apr 03 2021
    

Formula

Let y(m) = y(m-2) + 1/y(m-1) for m >= 2, with y(0)=y(1)=1. Then the denominator of y(n+1) equals the numerator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. [Reinhard Zumkeller, Dec 08 2011, as corrected in Cooper (2015)]