A004781 Binary expansion contains 3 adjacent 1's.
7, 14, 15, 23, 28, 29, 30, 31, 39, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 78, 79, 87, 92, 93, 94, 95, 103, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 142, 143, 151, 156, 157, 158, 159, 167
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for 2-automatic sequences.
Programs
-
Haskell
a004781 n = a004781_list !! (n - 1) a004781_list = filter f [0..] where f x | x < 7 = False | otherwise = (x `mod` 8) == 7 || f (x `div` 2) -- Reinhard Zumkeller, Jun 03 2012
-
Maple
q:= n-> verify([1$3], Bits[Split](n), 'sublist'): select(q, [$0..200])[]; # Alois P. Heinz, Oct 22 2021
-
Mathematica
Select[Range[200],MemberQ[Partition[IntegerDigits[#,2],3,1], {1,1,1}]&] (* Harvey P. Dale, Mar 31 2011 *) Select[Range[200], StringContainsQ[IntegerString[#, 2], "111"] &] (* Amiram Eldar, Oct 22 2021 *) Select[Range[200],SequenceCount[IntegerDigits[#,2],{1,1,1}]>0&] (* Harvey P. Dale, Dec 28 2021 *)
-
PARI
is(n)=!!bitand(bitand(n,n<<1),n<<2) \\ Charles R Greathouse IV, Sep 24 2012
Formula
a(n) ~ n. - Charles R Greathouse IV, Sep 24 2012
Extensions
Offset corrected by Reinhard Zumkeller, Jun 03 2012