cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003726 Numbers with no 3 adjacent 1's in binary expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 80, 81, 82
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A014082. Could be called "tribbinary numbers" by analogy with A003714. - John Keith, Mar 07 2022
The sequence of Tribbinary numbers can be constructed by writing out the Tribonacci representations of nonnegative integers and then evaluating the result in binary. These numbers are similar to Fibbinary numbers A003714, Fibternary numbers A003726, and Tribternary numbers A356823. The number of Tribbinary numbers less than any power of two is a Tribonacci number. We can generate Tribbinary numbers recursively: Start by adding 0 and 1 to the sequence. Then, if x is a number in the sequence add 2x, 4x+1, and 8x+3 to the sequence. The n-th Tribbinary number is even if the n-th term of the Tribonacci word is a. Respectively, the n-th Tribbinary number is of the form 4x+1 if the n-th term of the Tribonacci word is b, and the n-th Tribbinary number is of the form 8x+3 if the n-th term of the Tribonacci word is c. Every nonnegative integer can be written as the sum of two Tribbinary numbers. Every number has a Tribbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022

Crossrefs

Cf. A278038 (binary), A063037, A000073, A014082 (number of 111).
Cf. A004781 (complement).
Cf. A007088; A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110).

Programs

  • Haskell
    a003726 n = a003726_list !! (n - 1)
    a003726_list = filter f [0..] where
       f x = x < 7 || (x `mod` 8) < 7 && f (x `div` 2)
    -- Reinhard Zumkeller, Jun 03 2012
    
  • Mathematica
    Select[Range[0, 82], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] (* Michael De Vlieger, Dec 23 2019 *)
  • PARI
    is(n)=!bitand(bitand(n, n<<1), n<<2) \\ Charles R Greathouse IV, Feb 11 2017

Formula

There are A000073(n+3) terms of this sequence with at most n bits. In particular, a(A000073(n+3)+1) = 2^n. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=2} 1/a(n) = 9.516857810319139410424631558212354346868048230248717360943194590798113163384... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022

A004779 Binary expansion contains 3 adjacent 0's.

Original entry on oeis.org

8, 16, 17, 24, 32, 33, 34, 35, 40, 48, 49, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72, 80, 81, 88, 96, 97, 98, 99, 104, 112, 113, 120, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 152, 160, 161, 162, 163, 168
Offset: 0

Views

Author

Keywords

Crossrefs

Complement of A003796.

Programs

Formula

a(n) ~ n. - Charles R Greathouse IV, Oct 23 2015

A136037 Numbers with at least three adjacent equal digits in binary representation.

Original entry on oeis.org

7, 8, 14, 15, 16, 17, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 46, 47, 48, 49, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78, 79, 80, 81, 87, 88, 92, 93, 94, 95, 96, 97, 98, 99, 103, 104, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 11 2007

Keywords

Crossrefs

Cf. A007088.
Complement of A063037; union of A004779 and A004781.
Supersequence of A037970.

Programs

  • Mathematica
    Select[Range[150],SequenceCount[IntegerDigits[#,2],{x_,x_,x_}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 04 2020 *)
  • Python
    def ok(n): b = bin(n)[2:]; return "000" in b or "111" in b
    print(list(filter(ok, range(120)))) # Michael S. Branicky, Jul 08 2021

A300302 Square array T(n, k) (n >= 1, k >= 1) read by antidiagonals upwards: T(n, k) is the k-th positive number whose binary representation contains the binary representation of n as a substring.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 4, 6, 5, 4, 5, 8, 7, 6, 5, 6, 10, 9, 11, 8, 6, 7, 12, 11, 12, 12, 9, 7, 8, 14, 13, 13, 16, 13, 10, 8, 9, 16, 15, 14, 20, 17, 14, 11, 9, 10, 18, 17, 23, 22, 21, 18, 15, 12, 10, 11, 20, 19, 24, 28, 24, 22, 19, 19, 13, 11, 12, 22, 21, 25, 32, 29
Offset: 1

Views

Author

Rémy Sigrist, Mar 08 2018

Keywords

Comments

Each positive number k appears A122953(k) times in this array.

Examples

			Square array begins:
  n\k|    1    2    3    4    5    6    7    8    9   10
  ---+--------------------------------------------------
    1|    1    2    3    4    5    6    7    8    9   10  <--  A000027
    2|    2    4    5    6    8    9   10   11   12   13  <--  A062289
    3|    3    6    7   11   12   13   14   15   19   22  <--  A004780
    4|    4    8    9   12   16   17   18   19   20   24  <--  A004753
    5|    5   10   11   13   20   21   22   23   26   27  <--  A004748
    6|    6   12   13   14   22   24   25   26   27   28  <--  A004749
    7|    7   14   15   23   28   29   30   31   39   46  <--  A004781
    8|    8   16   17   24   32   33   34   35   40   48  <--  A004779
    9|    9   18   19   25   36   37   38   39   41   50
   10|   10   20   21   26   40   41   42   43   52   53  <--  A132782
		

Crossrefs

Programs

  • Perl
    See Links section.

Formula

T(n, 1) = n.
T(n, 2) = 2*n.
T(n, 3) = 2*n + 1.
T(1, n) = A000027(n).
T(2, n) = A062289(n).
T(3, n) = A004780(n).
T(4, n) = A004753(n).
T(5, n) = A004748(n).
T(6, n) = A004749(n).
T(7, n) = A004781(n).
T(8, n) = A004779(n-1).
T(10, n) = A132782(n).

A348556 Binary expansion contains 4 adjacent 1's.

Original entry on oeis.org

15, 30, 31, 47, 60, 61, 62, 63, 79, 94, 95, 111, 120, 121, 122, 123, 124, 125, 126, 127, 143, 158, 159, 175, 188, 189, 190, 191, 207, 222, 223, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 271, 286, 287, 303, 316, 317, 318
Offset: 1

Views

Author

Keywords

Comments

For k > 0, each term m = 2^(k+3) - 1 is the end of a run of A083593(k-1) consecutive terms. For k = 4, from a(13) = 120 up to a(20) = 2^7-1 = 127, there are A083593(3) = 8 consecutive terms corresponding to 1111000, 1111001, 1111010, 1111011, 1111100, 1111101, 111110 and 1111111. - Bernard Schott, Feb 20 2022

Crossrefs

Binary expansion contains k adjacent 1s: A000027 (1), A004780 (2), A004781 (3), this sequence (4).
Subsequences: A110286, A195744.

Programs

  • Maple
    q:= n-> verify([1$4], Bits[Split](n), 'sublist'):
    select(q, [$0..400])[];  # Alois P. Heinz, Oct 22 2021
  • Mathematica
    Select[Range[300], StringContainsQ[IntegerString[#, 2], "1111"] &] (* Amiram Eldar, Oct 22 2021 *)
  • PARI
    is(n)=n=bitand(n,n<<2); !!bitand(n,n<<1);
    
  • Python
    def ok(n): return "1111" in bin(n)
    print([k for k in range(319) if ok(k)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) ~ n.
a(n+1) <= a(n) + 16.
Showing 1-5 of 5 results.