cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004825 Numbers that are the sum of at most 3 positive cubes.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 16, 17, 24, 27, 28, 29, 35, 36, 43, 54, 55, 62, 64, 65, 66, 72, 73, 80, 81, 91, 92, 99, 118, 125, 126, 127, 128, 129, 133, 134, 136, 141, 152, 153, 155, 160, 179, 189, 190, 192, 197, 216, 217, 218, 224, 225, 232, 243, 244, 250, 251, 253
Offset: 1

Views

Author

Keywords

Comments

Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - R. J. Mathar, Sep 09 2015
Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K Sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - Charles R Greathouse IV, Sep 16 2016

Crossrefs

A003072 is a subsequence.
Cf. A004999.
Column k=3 of A336820.

Programs

  • Maple
    isA004825 := proc(n)
        local x,y,zc ;
        for x from 0 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                else
                    zc := n-x^3-y^3 ;
                    if zc >= y^3 and isA000578(zc) then
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A004825 := proc(n)
        option remember;
        local a;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA004825(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A004825(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
    # second Maple program:
    b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
          and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1))
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, -1, a(n-1))
          while not b(k, iroot(k, 3), 3) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 16 2016
  • Mathematica
    q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x,0,q}, {y,x,q}, {z,y,q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
  • PARI
    list(lim)=my(v=List(),k,t); for(x=0,sqrtnint(lim\=1,3), for(y=0, min(sqrtnint(lim-x^3,3),x), k=x^3+y^3; for(z=0,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015