A004825 Numbers that are the sum of at most 3 positive cubes.
0, 1, 2, 3, 8, 9, 10, 16, 17, 24, 27, 28, 29, 35, 36, 43, 54, 55, 62, 64, 65, 66, 72, 73, 80, 81, 91, 92, 99, 118, 125, 126, 127, 128, 129, 133, 134, 136, 141, 152, 153, 155, 160, 179, 189, 190, 192, 197, 216, 217, 218, 224, 225, 232, 243, 244, 250, 251, 253
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, On the density of sums of three cubes, ANTS-VII (2006), pp. 141-155.
- Index entries for sequences related to sums of cubes
Programs
-
Maple
isA004825 := proc(n) local x,y,zc ; for x from 0 do if 3*x^3 > n then return false; end if; for y from x do if x^3+2*y^3 > n then break; else zc := n-x^3-y^3 ; if zc >= y^3 and isA000578(zc) then return true; end if; end if; end do: end do: end proc: A004825 := proc(n) option remember; local a; if n = 1 then 0; else for a from procname(n-1)+1 do if isA004825(a) then return a; end if; end do: end if; end proc: seq(A004825(n),n=1..100) ; # R. J. Mathar, Sep 09 2015 # second Maple program: b:= proc(n, i, t) option remember; n=0 or i>0 and t>0 and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1)) end: a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, -1, a(n-1)) while not b(k, iroot(k, 3), 3) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2016
-
Mathematica
q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x,0,q}, {y,x,q}, {z,y,q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
-
PARI
list(lim)=my(v=List(),k,t); for(x=0,sqrtnint(lim\=1,3), for(y=0, min(sqrtnint(lim-x^3,3),x), k=x^3+y^3; for(z=0,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
Comments