cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A003072 Numbers that are the sum of 3 positive cubes.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
Offset: 1

Views

Author

Keywords

Comments

A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012

Examples

			a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
		

Crossrefs

Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
- squares: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2);
- cubes: A003325 (2, 3), A003072 (3, 3), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3);
- fourth powers: A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4);
- fifth powers: A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5);
- sixth powers: A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6);
- seventh powers: A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7);
- eighth powers: A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003386 (8, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8);
- ninth powers: A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9);
- tenth powers: A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10);
- eleventh powers: A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11).

Programs

  • Haskell
    a003072 n = a003072_list !! (n-1)
    a003072_list = filter c3 [1..] where
       c3 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ a003325_list
    -- Reinhard Zumkeller, Mar 24 2012
  • Maple
    isA003072 := proc(n)
        local x,y,z;
        for x from 1 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                if isA000578(n-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 1000 do
        if isA003072(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016
  • Mathematica
    Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
    With[{upto=500},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2,3]]]^3,3]],#<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
  • PARI
    sum(n=1,11,x^(n^3),O(x^1400))^3 /* Then [i|i<-[1..#%],polcoef(%,i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
    
  • PARI
    list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A004999 Sums of two nonnegative cubes.

Original entry on oeis.org

0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126, 128, 133, 152, 189, 216, 217, 224, 243, 250, 280, 341, 343, 344, 351, 370, 407, 432, 468, 512, 513, 520, 539, 559, 576, 637, 686, 728, 729, 730, 737, 756, 793, 854, 855, 945, 1000, 1001
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A045980; A003325 is a subsequence.
Cf. A000578, A004825, A010057, A373972 (characteristic function).
Indices of nonzero terms in A025446.

Programs

  • Haskell
    a004999 n = a004999_list !! (n-1)
    a004999_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (>= 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    Union[(#[[1]]^3+#[[2]]^3)&/@Tuples[Range[0,20],{2}]] (* Harvey P. Dale, Dec 04 2010 *)
  • PARI
    is(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0
    list(lim)=my(v=List());for(x=0,(lim+.5)^(1/3),for(y=0,min(x,(lim-x^3)^(1/3)),listput(v,x^3+y^3))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2012
    
  • PARI
    is(n)=my(L=sqrtnint(n-1,3)+1,U=sqrtnint(4*n,3));fordiv(n,m,if(L<=m&m<=U,my(ell=(m^2-n/m)/3);if(denominator(ell)==1&&issquare(m^2-4*ell),return(1))));0 \\ Charles R Greathouse IV, Apr 16 2013
    
  • PARI
    T=thueinit('z^3+1);
    is(n)=n==0 || #select(v->min(v[1],v[2])>=0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    

A336820 A(n,k) is the n-th number that is a sum of at most k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 3, 5, 5, 0, 1, 2, 3, 8, 8, 6, 0, 1, 2, 3, 4, 9, 9, 7, 0, 1, 2, 3, 4, 16, 10, 10, 8, 0, 1, 2, 3, 4, 5, 17, 16, 13, 9, 0, 1, 2, 3, 4, 5, 32, 18, 17, 16, 10, 0, 1, 2, 3, 4, 5, 6, 33, 19, 24, 17, 11, 0, 1, 2, 3, 4, 5, 6, 64, 34, 32, 27, 18, 12
Offset: 1

Views

Author

Alois P. Heinz, Aug 04 2020

Keywords

Examples

			Square array A(n,k) begins:
   0,  0,  0,  0,  0,  0,   0,   0,   0,  0,  0, ...
   1,  1,  1,  1,  1,  1,   1,   1,   1,  1,  1, ...
   2,  2,  2,  2,  2,  2,   2,   2,   2,  2,  2, ...
   3,  4,  3,  3,  3,  3,   3,   3,   3,  3,  3, ...
   4,  5,  8,  4,  4,  4,   4,   4,   4,  4,  4, ...
   5,  8,  9, 16,  5,  5,   5,   5,   5,  5,  5, ...
   6,  9, 10, 17, 32,  6,   6,   6,   6,  6,  6, ...
   7, 10, 16, 18, 33, 64,   7,   7,   7,  7,  7, ...
   8, 13, 17, 19, 34, 65, 128,   8,   8,  8,  8, ...
   9, 16, 24, 32, 35, 66, 129, 256,   9,  9,  9, ...
  10, 17, 27, 33, 36, 67, 130, 257, 512, 10, 10, ...
		

Crossrefs

A(n+j,n) for j=0-3 give: A001477(n-1), A000027, A000079, A000051.
Cf. A336725.

Programs

  • Maple
    A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
          proc(n, k) option remember; local b; b:=
            proc(x, y) option remember; `if`(x<0 or y<1, {},
              {0, b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})
            end;
            while nops(w(k)) < n do forget(b);
              l(k):= [l(k)[], (nops(l(k))+1)^k];
              w(k):= sort([select(h-> h
    				
  • Mathematica
    b[n_, k_, i_, t_] := b[n, k, i, t] = n == 0 || i > 0 && t > 0 && (b[n, k, i - 1, t] || i^k <= n && b[n - i^k, k, i, t - 1]);
    A[n_, k_] := A[n, k] = Module[{m}, For[m = 1 + If[n == 1, -1, A[n - 1, k]], !b[m, k, m^(1/k) // Floor, k], m++]; m];
    Table[A[n, 1+d-n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, Dec 03 2020, using Alois P. Heinz's code for columns *)

Formula

A(n,k) = n-1 for n <= k+1.

A022555 Positive integers that are not the sum of two nonnegative cubes.

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Omits the positive cubes (A000578) since m^3 = 0^3 + m^3, so is different from A057903.

Crossrefs

Complement of A004999. Cf. A004825, A022561, A022566, A057903, A000578.

Programs

  • Maple
    read transforms; cub := series(add(q^(n^3),n=0..100),q,1000001); t1 := series(cub^2,q,2000); t2 := POWERS(t1,q,2000); COMPl(t2);
  • Mathematica
    r[n_] := Reduce[x >= 0 && y >= 0 && n == x^3 + y^3, {x, y}, Integers]; Select[ Range[80], r[#] === False &]  (* Jean-François Alcover, Nov 06 2012 *)
    Select[Range@100,PowersRepresentations[#,2,3]=={}&] (* A much faster solution given by Giovanni Resta, Nov 06 2012 *)

Extensions

Edited by N. J. A. Sloane, Sep 28 2007

A022561 Numbers that are not the sum of 3 nonnegative cubes.

Original entry on oeis.org

4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 25, 26, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 63, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Keywords

Crossrefs

Complement of A004825.

Programs

A267414 Integers k such that there exist nonnegative integers x,y,z with k! = x^3 + y^3 + z^3.

Original entry on oeis.org

0, 1, 2, 4, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Altug Alkan, Jan 14 2016

Keywords

Comments

From Altug Alkan, David A. Corneth and Chai Wah Wu, Aug 09-26 2020: (Start)
Conjecture I: The natural density of this sequence is 1.
Conjecture II: All integers > 13 are terms. The decomposition is not necessarily unique; for instance, 12! = 35^3 + 309^3 + 766^3 = 240^3 + 504^3 + 696^3.
Deshouillers, Hennecart, & Landreau conjecture (the DHL conjecture) that the sequence of numbers that are a sum of at most three cubes has density 0.0999425... (see links).
This lets us make a heuristic argument that all integers k > 13 are terms.
It was verified for k < 34. For k >= 34 we can use the fact that m is a term if m!/t^3 is the sum of three nonnegative cubes. The cubefree part of 34! is 2686295049620 (cf. A145642) and tau((34!/2686295049620)^(1/3)) = 792 (cf. A248780). 132 terms of corresponding 792 numbers are congruent to 4 or 5 mod 9, that is, there cannot be the sum of three cubes in these 132 terms by modular restriction. So we can see that if 34! isn't the sum of at most three cubes then 792 - 132 = 660 candidate numbers aren't the sum of at most three cubes.
So roughly, if the DHL conjecture holds and if that density can be used as a probability that holds independently for candidates then we have the probability that 34! is the sum of at most 3 cubes to be 1 - (1-0.0999425)^660 ~= 1 - 6.6*10^-31. For larger k this probability doesn't tend to decrease. (End)

Examples

			0 and 1 are terms because 0! = 1! = 1 = 0^3 + 0^3 + 1^3.
2 is a term because 2! = 2 = 0^3 + 1^3 + 1^3.
4 is a term because 4! = 24 = 2^3 + 2^3 + 2^3.
From _Chai Wah Wu_, Jan 18 2016: (Start)
9! = 36^3 + 52^3 + 56^3
10! = 4^3 + 96^3 + 140^3
11! = 105^3 + 222^3 + 303^3
12! = 35^3 + 309^3 + 766^3
14! = 135^3 + 3153^3 + 3822^3
15! = 1092^3 + 2040^3 + 10908^3
16! = 7644^3 + 21192^3 + 22212^3
17! = 9984^3 + 22848^3 + 69984^3
18! = 18900^3 + 54060^3 + 184080^3
19! = 131040^3 + 331200^3 + 436320^3
20! = 87490^3 + 1034430^3 + 1098440^3
21! = 59850^3 + 2072070^3 + 3481380^3 (End)
22! = 286272^3 + 8168832^3 + 8334144^3. - _Altug Alkan_, Aug 08 2020
From _Chai Wah Wu_, Aug 09 2020: (Start)
23! = 8255520^3 + 10856160^3 + 28848960^3
24! = 8648640^3 + 9918720^3 + 85216320^3
25! = 31449600^3 + 194947200^3 + 200592000^3
26! = 133526400^3 + 232377600^3 + 729590400^3
27! = 400579200^3 + 697132800^3 + 2188771200^3
28! = 745516800^3 + 3859430400^3 + 6274195200^3
29! = 6029402400^3 + 7705152000^3 + 20136664800^3
30! = 24051081600^3 + 35394105600^3 + 59154883200^3
31! = 63842385600^3 + 74054736000^3 + 196233710400^3
32! = 19948723200^3 + 392984524800^3 + 587164032000^3
33! = 757780531200^3 + 1319649408000^3 + 1812063052800^3
34! = 2423348928000^3 + 5068495555200^3 + 5322645820800^3
35! = 221937408000^3 + 1100266675200^3 + 21780043084800^3
36! = 37944351244800^3 + 43054819315200^3 + 61932511872000^3 (End)
From _Altug Alkan_, Aug 15-26 2020: (Start)
37! = 24795996825600^3 + 74281492454400^3 + 237157683840000^3.
38! = 117664241587200^3 + 120627079372800^3 + 803958680448000^3.
39! = 863357752857600^3 + 953842592102400^3 + 2663078850432000^3.
40! = 2918729189376000^3 + 5087164642560000^3 + 8703942863616000^3.
41! = 7755318514944000^3 + 8120284204032000^3 + 31896357292800000^3.
42! = 89122911958080000^3 + 33781805785728000^3 + 87002517970368000^3.
43! = 122523857584128000^3 + 202407941159424000^3 + 369098064631296000^3.
44! = 259725052274688000^3 + 793899570207744000^3 + 1288734012453888000^3.
45! = 406827658382745600^3 + 1201813420282675200^3 + 4902359567603097600^3.
47! = 12321320074256793600^3 + 20307078211733913600^3 + 62859559551447859200^3.
48! = 25537325843751321600^3 + 149166695523144499200^3 + 208609080169435545600^3.
50! = 1299690649834536960000^3 + 1575788569801205760000^3 + 2896698799298304000000^3.
52! = 4714930301540659200000^3 + 30326925607072174080000^3 + 37482600824578990080000^3.
57! = 2143437030275189096448000^3 + 18952651629200785047552000^3 + 32303499916146500321280000^3. (End)
From _Altug Alkan_, Mar 05-13 2021: (Start)
46! = 5577191426219212800^3 + 6443840881904025600^3 + 17169667908109516800^3.
49! = 671664000771219456000^3 + 662061074870587392000^3 + 247029110344912896000^3.
51! = 9256160466097459200000^3 + 9117812465538416640000^3 + 428071307793592320000^3.
53! = 162171341319623860224000^3 + 14768160510292180992000^3 + 18786201326150049792000^3.
54! = 545218231179130629120000^3 + 335022509605704560640000^3 + 314703105438452290560000^3.
55! = 1946744272579774187520000^3 + 1230901820453108643840000^3 + 1511561473478381445120000^3.
58! = 52226010170722243215360000^3 + 102552481007618403041280000^3 + 104144718055889686855680000^3.
59! = 496516081488480416563200000^3 + 247419327579970911805440000^3 + 104213060097975874805760000^3. (49,51,53,54,55,59 found by _Bernard Landreau_, Mar 05-10 2021) (End)
From _Bernard Landreau_, Feb 10 2023: (Start)
56! = 8440722823838300835840000^3 + 1539870961334538792960000^3 + 4732343335270526976000000^3.
60! = 1954690295686184458321920000^3 + 187526160279422365040640000^3 + 945736839075280596664320000^3.
61! = 6987261145735262954225664000^3 + 5500819928796737985183744000^3 + 3511150067368879423488000^3.
62! = 28126020674003772660940800000^3 + 12303713179773215087247360000^3 + 19449735813987841779056640000^3.
63! = 106514918440099777554186240000^3 + 49252742968526796125306880000^3 + 86830960771932156207267840000^3.
64! = 426059673760399110216744960000^3 + 197010971874107184501227520000^3 + 347323843087728624829071360000^3.
65! = 1825857768347463635450265600000^3 + 1233646969650476271309619200000^3 + 656708896142403679243468800000^3.
66! = 7629164545500731715435233280000^3 + 383304147481048793646366720000^3 + 4645292541653757960968601600000^3.
67! = 32138800724565658662277939200000^3 + 3987806882839318432102809600000^3 + 14753675466796017234670387200000^3.
68! = 121268519043338230583014195200000^3 + 74635666310379772757724364800000^3 + 65491151303650959730645401600000^3.
69! = 440198819826578009858742681600000^3 + 217119306274746004582406553600000^3 + 422815083063767403026566348800000^3. (End)
From _Bernard Landreau_, Apr 12 2023: (Start)
70! = 1684880479643468059918290124800000^3 + 1267939232313822071989803417600000^3 + 1727697134569562112035900620800000^3.
71! = 7869526037543841297006565785600000^3 + 4179944826601729536159999590400000^3 + 6619802079654886665835708416000000^3.
72! = 13437726338581697013357713817600000^3 + 10167574949678977741805794099200000^3 + 38654599603517743131172247961600000^3.
73! = 96869296261623898801464382586880000^3 + 80774308520159270283270497894400000^3 + 144769602970826932947390114693120000^3.
74! = 649373800890254088606178494873600000^3 + 363407978539450964422332584755200000^3 + 207722030872866958396078844313600000^3.
75! = 2347486647113944742227212238848000000^3 + 2199783184771995658848232636416000000^3 + 1070862876804260107568106602496000000^3.
76! = 12262054139494209011130556907520000000^3 + 2762109848253646350901295382528000000^3 + 2746796636906395254645335359488000000^3.
77! = 47421174895780818749100971655168000000^3 + 18679208068237422355741320413184000000^3 + 31756770658228697228286202871808000000^3.
78! = 141193533844368458064892797124608000000^3 + 108335094312749634096990256889856000000^3 + 193437233894764827340173357613056000000^3.
79! = 897795952124597047877074078334976000000^3 + 151955762572905091739065815367680000000^3 + 551184446076431732583718393774080000000^3.
80! = 3554290394480645556188266337402880000000^3 + 1989394527958598219192394328571904000000^3 + 2658759141945971588173630544019456000000^3. (End)
		

Crossrefs

Programs

  • Maple
    isA267414 := proc(n)
        local nf,x,y ;
        nf := n! ;
        for x from 0 do
            if 3*x^3 > nf then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > nf then
                    break;
                end if;
                if isA000578(nf-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 0 to 1000 do
        if isA267414(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016

Extensions

a(51)-a(64) from Bernard Landreau, Feb 10 2023
a(65)-a(75) from Bernard Landreau, Apr 12 2023

A336205 Numbers k that can be expressed as x^3 + y^3 + z^3 with x^2 + y^2 + z^2 <= k where x, y, z are integers.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 43, 45, 46, 48, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 69, 71, 72, 73, 80, 81, 83, 88, 90, 91, 92, 97, 98, 99, 100, 101, 106, 109, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 132
Offset: 1

Views

Author

Altug Alkan, Jul 12 2020

Keywords

Comments

See A336240 for border case x^2 + y^2 + z^2 = x^3 + y^3 + z^3.
What is the natural density of this sequence?
There are infinitely many infinite parametric families of solutions which have negative values in (x,y,z). For example, 8*(3*a-1)^2*m^6 + 12*(3*a-1)*(a-1)*m^4 - 6*(2*a-1)*m^2 + 2*a^3 + 1 are terms for all a >= 0, m >= 0. (x = 1 - (6*a-2)*m^2, y = a - m*(1-(6*a-2)*m^2), z = a + m*(1-(6*a-2)*m^2)). - Altug Alkan, Jul 17 2020
By definition, corresponding (x,y,z) variables are produced by equation x^3 + y^3 + z^3 = x^2 + y^2 + z^2 + t with t >= 0. That is, x^2*(x-1) + y^2*(y-1) + z^2*(z-1) >= 0. Conjecture: Every even integer can be represented as x^2*(x-1) + y^2*(y-1) + z^2*(z-1) where x, y, z are integers. - Altug Alkan, Jul 19 2020

Examples

			11 is not a term because there is no (x,y,z) with x^2 + y^2 + z^2 <= 11 when x^3 + y^3 + z^3 = 11.
18 is a term because (-1)^3 + (-2)^3 + 3^3 = 18 and (-1)^2 + (-2)^2 + 3^2 <= 18.
61 is a term because (-4)^3 + 0^3 + 5^3 = 61 and (-4)^2 + 0^2 + 5^2 <= 61.
354 is a term because (-11)^3 + (-8)^3 + 13^3 = (-11)^2 + (-8)^2 + 13^2 = 354.
		

Crossrefs

Cf. A004825 (subsequence), A060464 (supersequence), A336240.

Programs

  • C
    See Links section.
  • Maple
    filter:= proc(n) local x,y,z,e1,e2;
      for x from 0 while 3*x^2 <= n do
        for y from 0 while x^2 + 2*y^2 <= n do
          for e1 in [-1,1] do for e2 in [-1,1] do
            z:= surd(n + e1*x^3 + e2*y^3,3);
            if z::integer and x^2 + y^2 + z^2 <= n then return true fi;
      od od od od;
      false
    end proc:
    select(filter, [$0..200]); # Robert Israel, Jul 12 2020
  • Mathematica
    filter[n_] := Module[{x, y, z, e1, e2},
      For[x = 0, 3*x^2 <= n, x++,
        For[y = 0, x^2 + 2*y^2 <= n, y++,
          For[e1 = -1, e1 <= 1, e1 += 2, For[e2 = -1, e2 <= 1, e2 += 2,
            z = (n + e1*x^3 + e2*y^3)^(1/3);
            If[IntegerQ[z] && x^2 + y^2 + z^2 <= n, Return[True]]
      ]]]]; False];
    Select[Range[0, 200], filter] (* Jean-François Alcover, Aug 11 2023, after Robert Israel *)

A351179 Least positive integer m such that m^6*n = w^6 + x^3 + y^3 + z^3 for some nonnegative integers w,x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 3, 1, 1, 1, 1, 5, 3, 3, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 3, 1, 1, 1, 1, 6, 3, 3, 3, 1, 1, 1, 5, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 6, 3, 2, 2, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 3, 1, 1, 1, 3, 3, 7, 3, 2, 1, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 04 2022

Keywords

Comments

a(n) always exists, because any positive rational number can be written as a sum of three cubes of positive rational numbers (see Richmond reference).
Aside from a(96) = 7 and a(850) = 8, a(n) <= 6 for n <= 10^6. - Charles R Greathouse IV, Feb 10 2022

Examples

			a(5) = 3 with 3^6*5 = 2^6 + 5^3 + 12^3 + 12^3.
a(12) = 5 with 5^6*12 = 3^6 + 19^3 + 34^3 + 52^3.
a(22) = 2 with 2^6*22 = 1^6 + 4^3 + 7^3 + 10^3.
a(31) = 6 with 6^6*31 = 0^6 + 4^3 + 15^3 + 113^3.
a(96) = 7 with 7^6*96 = 0^6 + 2^3 + 38^3 + 224^3.
a(101) = 4 with 4^6*101 = 3^6 + 22^3 + 39^3 + 70^3.
a(850) = 8 with 8^6*850 = 5^6 + 508^3 + 442^3 + 175^3.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Edition, Oxford Univ. Press, 1960. (See Theorem 234 on page 197.)

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[CQ[k*n-w^6-x^3-y^3],tab=Append[tab,m];Goto[aa]],{w,0,(k*n)^(1/6)},{x,0,((k*n-w^6)/3)^(1/3)},{y,x,((k*n-w^6-x^3)/2)^(1/3)}];
    m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]

Formula

a(n) <= A351199(n)^2. - Charles R Greathouse IV, Feb 05 2022

A336449 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*4^6.

Original entry on oeis.org

1, 9, 16, 25, 49, 81, 121, 169, 225, 289, -356, 361, 441, 529, 625, 729, 841, -948, 961, 1045, 1089, 1225, 1369, 1521, 1681, -1715, 1849, 1876, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, -3587, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5769, 5929
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*k) - (a^k)*t - t^2, y = a^(2*k) + (a^k)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*k). When a = 4, k = 1, t = 2*n + 1; (x, y, z) are primitive solutions of equation. Thus, terms of A016754 are terms of the sequence.

Examples

			(-15)^3 + (-27)^3 + 2*25^3 = 11^3 + (-29)^3 + 2*25^3 = 8192, 25 is a term.
(-65)^3 + (449)^3 + 2*(-356)^3 = 8192, -356 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (8192 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[Abs@x <= Abs@y && IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -5929, 5929}, {x, -Round[(Abs[8192 - 2z^3]/3)^(1/2)], Round[(Abs[8192 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 12000}];
    Select[v, MemberQ[u, #] &]

A336450 Values z of primitive solutions (x, y, z) to the Diophantine equation x^3 + y^3 + 2*z^3 = 2*5^6.

Original entry on oeis.org

1, -3, 4, 9, 16, 25, 36, 49, -56, 64, 81, 88, -104, 121, 144, -167, 169, 177, 196, -203, -243, -255, 256, 277, 289, 324, 361, -363, 373, -395, -411, 441, 484, 529, 576, 676, 709, -719, 729, 784, 841, 961, 1017, 1024, -1028, 1080, 1089, -1091, 1156, 1296, 1369
Offset: 1

Views

Author

XU Pingya, Aug 08 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
Let x = a^(2*m) - (a^m)*t - t^2, y = a^(2*m) + (a^m)*t - t^2, z = t^2; then x^3 + y^3 + 2*z^3 = 2*a^(6*m). When a = 5, m = 1, t = 5*n + k(k = {1, 2, 3, 4}); (x, y, z) are primitive solutions of equation. Thus, A047201(n)^2 are terms of the sequence.

Examples

			(-20)^3 + 34^3 + 2*(-3)^3 = 31250, -3 is a term.
(-11)^3 + 29^3 + 2*16^3 = 15^3 + 27^3 + 2*16^3 = 31250, 16 is a term.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = (31250 - x^3 - 2z^3)^(1/3) /. (-1)^(1/3) -> -1;
    If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -1369, 1369}, {x, -Round[(Abs[31250 - 2z^3]/3)^(1/2)], Round[(Abs[31250 - 2z^3]/3)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 2739}];
    Select[v, MemberQ[u, #] &]
Showing 1-10 of 16 results. Next