cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A385237 Smallest x such that x^3+y^3 = A004999(n), x and y are nonnegative integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 4, 2, 3, 4, 0, 1, 2, 3, 5, 4, 5, 0, 1, 2, 3, 4, 6, 5, 0, 1, 2, 3, 6, 4, 5, 7, 6, 0, 1, 2, 3, 4, 5, 7, 6, 0, 1, 2, 8, 3, 4, 7, 5, 6, 8, 0, 1, 2, 7, 3, 4, 5, 9, 8, 6, 7, 0, 1, 2, 3, 4, 8, 5, 6, 10, 9, 7, 0, 1, 2, 3, 8, 4, 5, 10, 6, 9, 7, 11
Offset: 1

Views

Author

Zhuorui He, Jul 08 2025

Keywords

Examples

			For n=9, A004999(9) = 35 = 2^3 + 3^3, so a(9) = 2.
For n=17, A004999(17) = 128 = 4^3 + 4^3, so a(17)=4.
		

Crossrefs

A003325 Numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021

References

  • C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.

Crossrefs

Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).

Programs

  • Haskell
    a003325 n = a003325_list !! (n-1)
    a003325_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
    With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
    
  • PARI
    isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
    
  • PARI
    T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
    
  • Python
    from sympy import integer_nthroot
    def aupto(lim):
      cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
      sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
      return [s for s in sum_cubes if s <= lim]
    print(aupto(1343)) # Michael S. Branicky, Feb 09 2021

Extensions

Error in formula line corrected by Zak Seidov, Jul 23 2009

A003347 Numbers that are the sum of 2 positive 5th powers.

Original entry on oeis.org

2, 33, 64, 244, 275, 486, 1025, 1056, 1267, 2048, 3126, 3157, 3368, 4149, 6250, 7777, 7808, 8019, 8800, 10901, 15552, 16808, 16839, 17050, 17831, 19932, 24583, 32769, 32800, 33011, 33614, 33792, 35893, 40544, 49575, 59050, 59081, 59292, 60073, 62174, 65536, 66825, 75856
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
917552689 is in the sequence as 917552689 = 17^5 + 62^5.
2557575000 is in the sequence as 2557575000 = 45^5 + 75^5.
5828050944 is in the sequence as 5828050944 = 56^5 + 88^5. (End)
		

Crossrefs

Programs

A003358 Numbers that are the sum of 2 nonzero 6th powers.

Original entry on oeis.org

2, 65, 128, 730, 793, 1458, 4097, 4160, 4825, 8192, 15626, 15689, 16354, 19721, 31250, 46657, 46720, 47385, 50752, 62281, 93312, 117650, 117713, 118378, 121745, 133274, 164305, 235298, 262145, 262208, 262873, 266240, 277769, 308800, 379793, 524288
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
10069120217 is in the sequence as 10069120217 = 29^6 + 46^6.
139314070233 is in the sequence as 139314070233 = 3^6 + 72^6.
404680615040 is in the sequence as 404680615040 = 22^6 + 86^6. (End)
		

Crossrefs

Cf. A088677 (2 distinct 6th). Supersequence of A106318.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

Extensions

Removed incorrect program. David A. Corneth, Aug 01 2020

A024670 Numbers that are sums of 2 distinct positive cubes.

Original entry on oeis.org

9, 28, 35, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 280, 341, 344, 351, 370, 407, 468, 513, 520, 539, 559, 576, 637, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1512, 1547, 1674
Offset: 1

Views

Author

Keywords

Comments

This sequence contains no primes since x^3+y^3=(x^2-x*y+y^2)*(x+y). - M. F. Hasler, Apr 12 2008
There are no terms == 3, 4, 5 or 6 mod 9. - Robert Israel, Oct 07 2014
a(n) mod 2: {1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0, ...} - Daniel Forgues, Sep 27 2018

Examples

			9 is in the sequence since 2^3 + 1^3 = 9.
35 is in the sequence since 3^3 + 2^3 = 35.
		

Crossrefs

See also: Sums of 2 positive cubes (not necessarily distinct): A003325. Sums of 3 distinct positive cubes: A024975. Sums of distinct positive cubes: A003997. Sums of 2 distinct nonnegative cubes: A114090. Sums of 2 nonnegative cubes: A004999. Sums of 2 distinct positive squares: A004431. Cubes: A000578.
Cf. A373971 (characteristic function).
Indices of nonzero terms in A025468.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= select(`<=`,{seq(seq(i^3 + j^3, j = 1 .. i-1), i = 2 .. floor(N^(1/3)))},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(S,list));
    # Robert Israel, Oct 07 2014
  • Mathematica
    lst={};Do[Do[x=a^3;Do[y=b^3;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/3)],a+1,-1}],{a,Floor[n^(1/3)],1,-1}],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
    Select[Range@ 1700, Total@ Boole@ Map[And[! MemberQ[#, 0], UnsameQ @@ #] &, PowersRepresentations[#, 2, 3]] > 0 &] (* Michael De Vlieger, May 13 2017 *)
  • PARI
    isA024670(n)=for( i=ceil(sqrtn( n\2+1,3)),sqrtn(n-.5,3), isA000578(n-i^3) & return(1)) /* One could also use "for( i=2,sqrtn( n\2-1,3),...)" but this is much slower since there are less cubes in [n/2,n] than in [1,n/2]. Replacing the -1 here by +.5 would yield A003325, allowing for a(n)=x^3+x^3. Replacing -1 by 0 may miss some a(n) of this form due to rounding errors. - M. F. Hasler, Apr 12 2008 */
    
  • Python
    from itertools import count, takewhile
    def aupto(limit):
        cbs = list(takewhile(lambda x: x <= limit, (i**3 for i in count(1))))
        sms = set(c+d for i, c in enumerate(cbs) for d in cbs[i+1:])
        return sorted(s for s in sms if s <= limit)
    print(aupto(1674)) # Michael S. Branicky, Sep 28 2021

Extensions

Name edited by Zak Seidov, May 31 2011

A159843 Sums of two rational cubes.

Original entry on oeis.org

1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117
Offset: 1

Views

Author

Steven Finch, Apr 23 2009

Keywords

Comments

Conjectured asymptotic (based on the random matrix theory) is given in Cohen (2007) on p. 378.
The prime elements are listed in A166246. - Max Alekseyev, Oct 10 2009
Alpöge et al. prove 'that the density of integers expressible as the sum of two rational cubes is strictly positive and strictly less than 1.' The authors remark that it is natural to conjecture that these integers 'have natural density exactly 1/2.' - Peter Luschny, Nov 30 2022
Jha, Majumdar, & Sury prove that every nonzero residue class mod p (for prime p) has infinitely many elements, as do 1 and 8 mod 9. - Charles R Greathouse IV, Jan 24 2023
Alpöge, Bhargava, & Shnidman prove that the lower density of this sequence is at least 2/21 and its upper density is at most 5/6. - Charles R Greathouse IV, Feb 15 2023

References

  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 379.

Crossrefs

Complement of A185345.
Subsequences include A045980, A004999, and A003325.

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 117; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Join[{1}, Reap[ Do[n = CubeFreePart[x*y*(x + y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union]; A159843 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 03 2012 *)
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<3 || mwr[1], return(1)); if(mwr[2]<1, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(ar)); for(effort=1,99, mwr=ellrank(eri,effort); if(mwr[1]>0, return(1), mwr[2]<1, return(0))); "yes under BSD conjecture" \\ Charles R Greathouse IV, Dec 02 2022

Formula

A cubefree integer c>2 is in this sequence iff the elliptic curve y^2=x^3+16*c^2 has positive rank. - Max Alekseyev, Oct 10 2009

A004825 Numbers that are the sum of at most 3 positive cubes.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 16, 17, 24, 27, 28, 29, 35, 36, 43, 54, 55, 62, 64, 65, 66, 72, 73, 80, 81, 91, 92, 99, 118, 125, 126, 127, 128, 129, 133, 134, 136, 141, 152, 153, 155, 160, 179, 189, 190, 192, 197, 216, 217, 218, 224, 225, 232, 243, 244, 250, 251, 253
Offset: 1

Views

Author

Keywords

Comments

Or: numbers which are the sum of 3 (not necessarily distinct) nonnegative cubes. - R. J. Mathar, Sep 09 2015
Deshouillers, Hennecart, & Landreau conjecture that this sequence has density 0.0999425... = lim_K Sum_{k=1..K} exp(c*rho(k,K)/K^2)/K where c = -gamma(4/3)^3/6 = -0.1186788..., K takes increasing values in A003418 (or, equivalently, A051451), and rho(k0,K) is the number of triples 1 <= k1,k2,k3 <= K such that k0 = k1^3 + k2^3 + k3^3 mod K. - Charles R Greathouse IV, Sep 16 2016

Crossrefs

A003072 is a subsequence.
Cf. A004999.
Column k=3 of A336820.

Programs

  • Maple
    isA004825 := proc(n)
        local x,y,zc ;
        for x from 0 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                else
                    zc := n-x^3-y^3 ;
                    if zc >= y^3 and isA000578(zc) then
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A004825 := proc(n)
        option remember;
        local a;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA004825(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A004825(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
    # second Maple program:
    b:= proc(n, i, t) option remember; n=0 or i>0 and t>0
          and (b(n, i-1, t) or i^3<=n and b(n-i^3, i, t-1))
        end:
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, -1, a(n-1))
          while not b(k, iroot(k, 3), 3) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 16 2016
  • Mathematica
    q=7; imax=q^3; Select[Union[Flatten[Table[x^3+y^3+z^3, {x,0,q}, {y,x,q}, {z,y,q}]]], #<=imax&] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
  • PARI
    list(lim)=my(v=List(),k,t); for(x=0,sqrtnint(lim\=1,3), for(y=0, min(sqrtnint(lim-x^3,3),x), k=x^3+y^3; for(z=0,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015

A045980 Numbers of the form x^3 + y^3 or x^3 - y^3.

Original entry on oeis.org

0, 1, 2, 7, 8, 9, 16, 19, 26, 27, 28, 35, 37, 54, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 128, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 250, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 432
Offset: 1

Views

Author

Keywords

Comments

Sums of two integer cubes. - Charles R Greathouse IV, Mar 30 2022

Examples

			7 = (2)^3 + (-1)^3.
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 86.

Crossrefs

A004999 and A003325 are subsequences.

Programs

  • Haskell
    a045980 n = a045980_list !! (n-1)
    a045980_list = 0 : filter f [1..] where
       f x = g $ takeWhile ((<= 4 * x) . (^ 3)) $ a027750_row x where
         g [] = False
         g (d:ds) = r == 0 && a010052 (d ^ 2 - 4 * y) == 1 || g ds
           where (y, r) = divMod (d ^ 2 - div x d) 3
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    Union[Select[Sort[Flatten[Table[{j^3-i^3, j^3+i^3}, {i, 0, 20}, {j, i, 20}]]], #<20^3-19^3&]]
    With[{nn=20},Take[Union[Select[Flatten[{Total[#],#[[1]]-#[[2]]}&/@(Tuples[ Range[0,nn],2]^3)],#>-1&]],3*nn]] (* Harvey P. Dale, Jun 22 2014 *)
  • PARI
    is(n)=fordiv(n,d, my(L=(d^2-n/d)/3); if(denominator(L)==1 && issquare(d^2-4*L), return(1))); 0 \\ Charles R Greathouse IV, Jun 12 2012
    
  • PARI
    list(lim)={
        my(v=List(),x3,t);
        for(x=0,sqrtnint(lim\=1,3),
            x3=x^3;
            for(y=0,min(sqrtnint(lim-x3,3),x),
                listput(v,x3+y^3)
            )
        );
        for(x=2,t=sqrtint(lim\3),
            x3=x^3;
            for(y=sqrtnint(max(0,x3-lim-1),3)+1,x-1,
                listput(v,x3-y^3)
            )
        );
        t=(t+1)^3-t^3;
        if(t<=lim,listput(v,t));
        Set(v);
    } \\ Charles R Greathouse IV, Jun 12 2012, updated Jan 13 2022
    
  • PARI
    is(n)=#thue(thueinit(z^3+1),n) \\ Ralf Stephan, Oct 18 2013
    

A025446 Number of partitions of n into 2 nonnegative cubes.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

a(1729) = 2, the first point where a value larger than 1 appears, and where this sequence differs from A373972. - Antti Karttunen, Jun 24 2024

Examples

			From _Antti Karttunen_, Jun 24 2024: (Start)
8 = 0^3 + 2^3, and as there are no other partitions of 8 into 2 nonnegative cubes, a(8) = 1.
16 = 2^3 + 2^3, and as there are no other partitions of 16 into 2 nonnegative cubes, a(16) = 1.
1729 = 1^3 + 12^3 = 9^3 + 10^3, and as there are no other partitions of 1729 into 2 nonnegative cubes, a(1729) = 2.
(End)
		

Crossrefs

Cf. A010057, A025455, A004999 (indices of nonzero terms), A373972 (their characteristic function).

Programs

  • PARI
    A025446(n) = if(n<=2, 1, my(s=0, x=sqrtnint(n,3)); forstep(i=x, 0, -1, my(x3=i^3, y3=n-x3); if(y3>x3, return(s), s += ispower(y3, 3)))); \\ Antti Karttunen, Jun 24 2024

Formula

a(n) = A010057(n) + A025455(n) = A010057(n) XOR A025455(n). [The latter by Fermat's Last Theorem] - Antti Karttunen, Jun 24 2024

Extensions

Data section extended up to a(126) and the secondary offset added by Antti Karttunen, Jun 24 2024

A343326 Number of ways to write n as the integral part of (a^3+b^3)/2 + (c^3+d^3)/6, where a,b,c,d are nonnegative integers with a >= max{b,1} and c >= max{d,1}.

Original entry on oeis.org

2, 3, 3, 2, 4, 7, 4, 1, 4, 6, 3, 4, 3, 6, 5, 6, 5, 3, 7, 5, 2, 4, 6, 4, 5, 7, 5, 2, 6, 7, 1, 2, 8, 4, 6, 5, 9, 10, 7, 4, 6, 7, 6, 2, 5, 8, 4, 6, 5, 5, 6, 4, 2, 7, 7, 2, 3, 9, 5, 3, 4, 6, 5, 7, 9, 7, 8, 8, 12, 5, 5, 6, 9, 10, 7, 5, 7, 7, 5, 4, 3, 6, 4, 5, 6, 8, 9, 7, 5, 10, 5, 5, 3, 7, 10, 3, 3, 8, 5, 10, 9
Offset: 0

Views

Author

Zhi-Wei Sun, Apr 11 2021

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for all n = 0..10^5.

Examples

			a(0) = 2 with 0 = floor((1^3+0^3)/2 + (1^3+0^3)/6) = floor((1^3+0^3)/2 + (1^3+1^3)/6).
a(7) = 1 with 7 = floor((3^3+1^3)/2 + (2^3+2^3)/6).
a(30) = 1 with 30 = floor((2^3+2^3)/2 + (5^3+2^3)/6).
a(111) = 1 with 111 = floor((6^3+1^3)/2 + (2^3+2^3)/6).
a(163) = 1 with 163 = floor((6^3+3^3)/2 + (5^3+5^3)/6).
a(219) = 1 with 219 = floor((4^3+0^3)/2 + (10^3+5^3)/6).
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    tab={};Do[r=0;Do[If[CQ[6n+s-3(x^3+y^3)-z^3],r=r+1],{s,Boole[n==0],5},{x,1,((6n+s-1)/3)^(1/3)},{y,0,Min[x,((6n+s-1)/3-x^3)^(1/3)]},{z,0,((6n+s-3(x^3+y^3))/2)^(1/3)}];tab=Append[tab,r],{n,0,100}];Print[tab]
Showing 1-10 of 26 results. Next