cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A222304 Numbers k such that 2k is in A045980.

Original entry on oeis.org

0, 1, 4, 8, 13, 14, 27, 28, 32, 36, 49, 62, 63, 64, 76, 104, 108, 109, 112, 125, 140, 148, 158, 171, 172, 185, 193, 216, 224, 234, 244, 252, 256, 260, 288, 301, 302, 343, 351, 364, 365, 378, 392, 427, 433, 468, 494, 496, 500, 504, 508, 512, 532, 536, 589, 603, 608, 652, 665, 666, 676, 679, 728, 729, 734, 756, 769, 832
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2013, based on a suggestion from Allan C. Wechsler

Keywords

Comments

Numbers k such that 2k = x^3 + y^3 for some integers x, y. - Charles R Greathouse IV, Nov 29 2014

Crossrefs

Programs

A222305 Numbers k such that 9k is in A045980.

Original entry on oeis.org

0, 1, 3, 6, 7, 8, 13, 14, 21, 24, 27, 31, 38, 39, 43, 48, 52, 56, 57, 64, 73, 78, 81, 84, 91, 95, 104, 105, 111, 112, 125, 133, 134, 147, 148, 155, 157, 162, 168, 183, 186, 189, 192, 195, 206, 211, 216, 237, 241, 244, 245, 248, 258, 259, 273, 291, 294, 301, 304, 305, 307, 312, 343, 344, 351, 372, 375, 378, 381, 384
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2013, based on a suggestion from Allan C. Wechsler

Keywords

Comments

The sequence "numbers k such that 3k is in A045980" consists of these numbers multiplied by 3.

Crossrefs

Programs

A222306 Numbers k such that 4k is in A045980.

Original entry on oeis.org

0, 2, 4, 7, 14, 16, 18, 31, 32, 38, 52, 54, 56, 70, 74, 79, 86, 108, 112, 117, 122, 126, 128, 130, 144, 151, 182, 189, 196, 234, 247, 248, 250, 252, 254, 256, 266, 268, 304, 326, 333, 338, 364, 367, 378, 416, 430, 432, 434, 436, 448, 486, 500, 511, 515, 518, 542, 549, 556, 558, 560, 592, 632, 635, 662, 670, 679, 682
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2013, based on a suggestion from Allan C. Wechsler

Keywords

Crossrefs

Programs

A085367 Semiprimes that can be expressed as the sum or difference of two cubes: intersection of A001358 and A045980.

Original entry on oeis.org

9, 26, 35, 65, 91, 133, 169, 215, 217, 218, 335, 341, 386, 407, 469, 485, 511, 559, 721, 737, 793, 817, 866, 973, 1027, 1115, 1141, 1241, 1261, 1267, 1339, 1343, 1385, 1387, 1538, 1603, 1685, 1727, 1843, 1853, 1981, 2071, 2189, 2402, 2413, 2611, 2743, 2771
Offset: 1

Views

Author

Hugo Pfoertner, Jun 25 2003

Keywords

Examples

			a(1)=9 because 2^3+1^3=3*3, a(2)=26=3^3-1^3=2*13.
a(5)=91 is the smallest semiprime expressible in two different ways: 91=4^3+3^3=6^3-5^3=7*13.
		

Crossrefs

Programs

  • PARI
    T=thueinit('z^3+1);
    is(n)=bigomega(n)==2 && #thue(T, n)
    list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), if(#thue(T, p*q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Nov 29 2014

A003325 Numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021

References

  • C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.

Crossrefs

Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).

Programs

  • Haskell
    a003325 n = a003325_list !! (n-1)
    a003325_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
    With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
    
  • PARI
    isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
    
  • PARI
    T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
    
  • Python
    from sympy import integer_nthroot
    def aupto(lim):
      cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
      sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
      return [s for s in sum_cubes if s <= lim]
    print(aupto(1343)) # Michael S. Branicky, Feb 09 2021

Extensions

Error in formula line corrected by Zak Seidov, Jul 23 2009

A004999 Sums of two nonnegative cubes.

Original entry on oeis.org

0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126, 128, 133, 152, 189, 216, 217, 224, 243, 250, 280, 341, 343, 344, 351, 370, 407, 432, 468, 512, 513, 520, 539, 559, 576, 637, 686, 728, 729, 730, 737, 756, 793, 854, 855, 945, 1000, 1001
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A045980; A003325 is a subsequence.
Cf. A000578, A004825, A010057, A373972 (characteristic function).
Indices of nonzero terms in A025446.

Programs

  • Haskell
    a004999 n = a004999_list !! (n-1)
    a004999_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (>= 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    Union[(#[[1]]^3+#[[2]]^3)&/@Tuples[Range[0,20],{2}]] (* Harvey P. Dale, Dec 04 2010 *)
  • PARI
    is(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0
    list(lim)=my(v=List());for(x=0,(lim+.5)^(1/3),for(y=0,min(x,(lim-x^3)^(1/3)),listput(v,x^3+y^3))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2012
    
  • PARI
    is(n)=my(L=sqrtnint(n-1,3)+1,U=sqrtnint(4*n,3));fordiv(n,m,if(L<=m&m<=U,my(ell=(m^2-n/m)/3);if(denominator(ell)==1&&issquare(m^2-4*ell),return(1))));0 \\ Charles R Greathouse IV, Apr 16 2013
    
  • PARI
    T=thueinit('z^3+1);
    is(n)=n==0 || #select(v->min(v[1],v[2])>=0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    

A159843 Sums of two rational cubes.

Original entry on oeis.org

1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, 37, 42, 43, 48, 49, 50, 51, 53, 54, 56, 58, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 75, 78, 79, 84, 85, 86, 87, 89, 90, 91, 92, 94, 96, 97, 98, 103, 104, 105, 106, 107, 110, 114, 115, 117
Offset: 1

Views

Author

Steven Finch, Apr 23 2009

Keywords

Comments

Conjectured asymptotic (based on the random matrix theory) is given in Cohen (2007) on p. 378.
The prime elements are listed in A166246. - Max Alekseyev, Oct 10 2009
Alpöge et al. prove 'that the density of integers expressible as the sum of two rational cubes is strictly positive and strictly less than 1.' The authors remark that it is natural to conjecture that these integers 'have natural density exactly 1/2.' - Peter Luschny, Nov 30 2022
Jha, Majumdar, & Sury prove that every nonzero residue class mod p (for prime p) has infinitely many elements, as do 1 and 8 mod 9. - Charles R Greathouse IV, Jan 24 2023
Alpöge, Bhargava, & Shnidman prove that the lower density of this sequence is at least 2/21 and its upper density is at most 5/6. - Charles R Greathouse IV, Feb 15 2023

References

  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 379.

Crossrefs

Complement of A185345.
Subsequences include A045980, A004999, and A003325.

Programs

  • Mathematica
    (* A naive program with a few pre-computed terms *) nmax = 117; xmax = 2000; CubeFreePart[n_] := Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} & /@ FactorInteger[n]); nn = Join[{1}, Reap[ Do[n = CubeFreePart[x*y*(x + y)]; If[1 < n <= nmax, Sow[n]], {x, 1, xmax}, {y, x, xmax}]][[2, 1]] // Union]; A159843 = Select[ Union[nn, nn*2^3, nn*3^3, nn*4^3, {17, 31, 53, 67, 71, 79, 89, 94, 97, 103, 107}], # <= nmax &] (* Jean-François Alcover, Apr 03 2012 *)
  • PARI
    is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E=ellinit([0, 16*r^2]), eri=ellrankinit(E), mwr=ellrank(eri), ar); if(r<3 || mwr[1], return(1)); if(mwr[2]<1, return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(ar)); for(effort=1,99, mwr=ellrank(eri,effort); if(mwr[1]>0, return(1), mwr[2]<1, return(0))); "yes under BSD conjecture" \\ Charles R Greathouse IV, Dec 02 2022

Formula

A cubefree integer c>2 is in this sequence iff the elliptic curve y^2=x^3+16*c^2 has positive rank. - Max Alekseyev, Oct 10 2009

A152043 Numbers expressible as the difference of two nonnegative cubes.

Original entry on oeis.org

0, 1, 7, 8, 19, 26, 27, 37, 56, 61, 63, 64, 91, 98, 117, 124, 125, 127, 152, 169, 189, 208, 215, 216, 217, 218, 271, 279, 296, 316, 331, 335, 342, 343, 386, 387, 397, 448, 469, 485, 488, 504, 511, 512, 513, 547, 602, 604, 631, 657, 665, 702, 721, 728, 729, 784
Offset: 1

Views

Author

Mark Taggart (mt2612f(AT)aol.com), Nov 21 2008

Keywords

Comments

Subsequence of A045980. - R. J. Mathar, Nov 28 2008
Contains A000578 as a subsequence. - Chandler

Examples

			E.g. 7=2^3-1^3, 8=2^3-0^3, 296=8^3-6^3.
		

Crossrefs

The Index to the OEIS lists many related sequences under "difference of two cubes". - N. J. A. Sloane, Dec 04 2008

Programs

  • PARI
    T=thueinit('z^3+1);
    is(n)=n==0 || #select(v->v[1]<=0&&v[2]>=0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014

Extensions

Extended by Ray Chandler, Dec 04 2008

A020894 Nonnegative numbers that are sums of two nonzero cubes.

Original entry on oeis.org

0, 2, 7, 9, 16, 19, 26, 28, 35, 37, 54, 56, 61, 63, 65, 72, 91, 98, 117, 124, 126, 127, 128, 133, 152, 169, 189, 208, 215, 217, 218, 224, 243, 250, 271, 279, 280, 296, 316, 331, 335, 341, 342, 344, 351, 370, 386, 387, 397, 407, 432, 448, 468, 469
Offset: 1

Views

Author

Keywords

Comments

From Michael B. Porter, Oct 16 2009: (Start)
When calculating terms, there is no need to search beyond a value x defined by x^3 - (x-1)^3 = n. The positive solution is given by x = 1/2 + (sqrt(12n-3))/6.
There are no cubes in this sequence, but the numbers before and after a cube are all included. (End)

Examples

			From _Michael B. Porter_, Oct 16 2009: (Start)
7 is in the sequence because 2^3 + (-1)^3 = 7
8 is not in the sequence because the only solutions to x^3 + y^3 = 8 have either x=0 or y=0. (End)
		

Crossrefs

Cf. A045980 [From Michael B. Porter, Oct 16 2009]

Programs

  • Mathematica
    Reap[For[n = 0, n < 500, n++, fi = FindInstance[x > 0 && y != 0 && n == x^3 + y^3, {x, y}, Integers, 1]; If[fi =!= {}, Print[n, " = ", Hold[x^3 + y^3] /. fi[[1]]]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 05 2016 *)
  • PARI
    isA020894(n) = {r=0;x=1.0/2+sqrt(12*n-3.0)/6;for(i=1,floor(x),if(ispower(n-i^3,3) & (n != i^3),r++));r>0}; \\ Michael B. Porter, Oct 16 2009
    
  • PARI
    T=thueinit('z^3+1);
    is(n)=n==0 || #select(v->v[1] && v[2], thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014

Extensions

Definition and offset edited by N. J. A. Sloane, Dec 01 2009

A307585 Positive sums of two distinct cubes (of arbitrary sign).

Original entry on oeis.org

1, 7, 8, 9, 19, 26, 27, 28, 35, 37, 56, 61, 63, 64, 65, 72, 91, 98, 117, 124, 125, 126, 127, 133, 152, 169, 189, 208, 215, 216, 217, 218, 224, 243, 271, 279, 280, 296, 316, 331, 335, 341, 342, 343, 344, 351, 370, 386, 387, 397, 407, 448, 468, 469, 485, 488, 504, 511, 512, 513, 520, 539, 547, 559
Offset: 1

Views

Author

Robert Israel, Apr 15 2019

Keywords

Comments

All terms == 0, 1, 2, 7 or 8 (mod 9).

Examples

			a(3) = 8 = 0^3 + 2^3.
a(4) = 9 = 1^3 + 2^3.
a(5) = 19 = (-2)^3 + 3^3.
		

Crossrefs

Contained in A045980. Contains A024670.
Primes in this sequence: A002407.
Cf. A060464.

Programs

  • Maple
    filter:= proc(n) local d, dp, r;
       for d in numtheory:-divisors(n) do
         dp:= n/d;
         r:= 12*dp - 3*d^2;
         if r > 0 and issqr(r) and (sqrt(r)/6 + d/2)::integer then return true fi
       od;
       false
    end proc:
    select(filter, [$0..1000]);
  • Mathematica
    filterQ[n_] := Module[{d, dp, r}, Catch[Do[dp = n/d; r = 12 dp - 3 d^2; If[r > 0 && IntegerQ[Sqrt[r]] && IntegerQ[Sqrt[r]/6 + d/2], Throw[True]], {d, Divisors[n]}]; False]];
    Select[Range[1000], filterQ] (* Jean-François Alcover, Oct 17 2020, after Maple *)
Showing 1-10 of 11 results. Next