cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105774 A "fractal" transform of the Fibonacci numbers: a(1)=1; then if F(n) < k <= F(n+1), a(k) = F(n+1) - a(k - F(n)) where F(n) = A000045(n).

Original entry on oeis.org

1, 1, 2, 4, 4, 7, 7, 6, 12, 12, 11, 9, 9, 20, 20, 19, 17, 17, 14, 14, 15, 33, 33, 32, 30, 30, 27, 27, 28, 22, 22, 23, 25, 25, 54, 54, 53, 51, 51, 48, 48, 49, 43, 43, 44, 46, 46, 35, 35, 36, 38, 38, 41, 41, 40, 88, 88, 87, 85, 85, 82, 82, 83, 77, 77, 78, 80, 80, 69, 69, 70, 72, 72
Offset: 1

Views

Author

Benoit Cloitre, May 04 2005

Keywords

Comments

Let tau = (1+sqrt(5))/2; then the missing numbers 3,5,8,10,13,16,18,21,... are given by round(tau^2*k) for k > 0 (A004937).
Indices n such that a(n) = a(n+1) are given by floor(tau^2*k) - 1 for k > 0 (A003622).
Numbers n such that a(n) differs from a(n+1) are given by floor(tau*k+1/tau) for k > 0 (A022342).
Indices n giving isolated terms (a(n) differs from a(n-1) and a(n+1)) are given by floor(tau*floor(tau^2*k)) for k > 0 (A003623).
Remove 0's from the first differences of sorted values; then you get a version of the infinite Fibonacci word (A001468). I.e., sorted values are 1,1,2,4,4,6,7,7,9,9,11,12,12,..., first differences are 0,1,2,0,2,1,0,2,0,2,1,0,2,0,1,...; removing 0's gives 1,2,2,1,2,2,1,2,1,2,2,1,2,1,2,2,1,2,... #{ k : a(k)=k}=infty.

Examples

			For 1 = F(2) < k <= F(3) = 2 the rule gives a(2) = 2 - a(1) = 1 ... if 5 = F(5) < k <= F(6) = 8 the rule forces a(6) = 8 - a(6-5) = 8 - a(1) = 7; a(7) = 8 - a(2) = 7; a(8) = 8 - a(3) = 6.
		

Crossrefs

Formula

a(A000045(n)) = A006498(n-1) for n >= 1. - Typo corrected by Antti Karttunen, Mar 17 2017
limsup a(n)/n = tau and liminf a(n)/n = (tau+2)/5 where tau = (1+sqrt(5))/2. - Corrected by Jeffrey Shallit, Dec 17 2023
a(n) mod 2 = A085002(n) - Benoit Cloitre, May 10 2005
a(1) = 1; for n > 1, a(n) = A000045(2+A072649(n-1)) - a(n-A000045(1 + A072649(n-1))). - Antti Karttunen, Mar 17 2017

A105669 A "fractal" transform of the Fibonacci numbers F(n)=A000045(n): a(1)=1, then for n>1 if F(n) < k < F(n+1) we have a(k) = F(n+1)-a(k-F(n)) and when k = F(n+1) we force a(F(n+1)) = F(n+1) + (1+(-1)^n)*F(n).

Original entry on oeis.org

1, 2, 2, 4, 7, 7, 6, 6, 12, 11, 11, 9, 20, 20, 19, 19, 17, 14, 14, 15, 15, 33, 32, 32, 30, 27, 27, 28, 28, 22, 23, 23, 25, 54, 54, 53, 53, 51, 48, 48, 49, 49, 43, 44, 44, 46, 35, 35, 36, 36, 38, 41, 41, 40, 40, 88, 87, 87, 85, 82, 82, 83, 83, 77, 78, 78, 80, 69, 69, 70, 70, 72
Offset: 1

Views

Author

Benoit Cloitre, May 03 2005

Keywords

Comments

Let b denote the sequence of n such that a(n)=a(n+1), then b(n)=floor(tau^2*n) where tau=(1+sqrt(5))/2.
Missing numbers are the nearest integer to tau^2*n, n>=0 (cf. A004937).
#{k>0 : a(k) = k} = infinity.
This kind of "fractal" transform can be applied to any increasing monotonic sequence giving true fractal properties for sequences = (m^n)_{n>0} with m integer >=2, specially when m is odd (cf. A093347, A093348).

Examples

			For 5 = F(5) < k <= F(6) = 8 we get a(6) = 8-a(6-5) = 8-a(1) = 7.
a(7) = 8-a(7-5) = 8-a(2) = 6.
a(8) = 8-a(8-5) = 8-a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n <= 1, 1, Fibonacci[(k = Floor[Log[Sqrt[5]*n]/Log[GoldenRatio]]) + 1] - a[n - Fibonacci[k]]]; Array[a, 100] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    f=(1+sqrt(5))/2; a(n)=if(n<2,1,fibonacci(floor(log(sqrt(5)*n)/log(f))+1)-a(n-fibonacci(floor(log(sqrt(5)*n)/log(f)))))

Formula

F(2n) = F(2n+1) - F(n+1)^2 + F(n)*F(n-1) for n>0.
a(F(2n-1)) = F(2n)-1 for n>1.
1/tau < a(n)/n < tau.

A004938 a(n) = round(n*phi^3), where phi is the golden ratio, A001622.

Original entry on oeis.org

0, 4, 8, 13, 17, 21, 25, 30, 34, 38, 42, 47, 51, 55, 59, 64, 68, 72, 76, 80, 85, 89, 93, 97, 102, 106, 110, 114, 119, 123, 127, 131, 136, 140, 144, 148, 152, 157, 161, 165, 169, 174, 178, 182, 186, 191, 195, 199
Offset: 0

Views

Author

Keywords

Comments

Nearest integer to n*phi^3.

Crossrefs

Programs

  • Magma
    [Round((2+Sqrt(5))*n): n in [0..80]]; // G. C. Greubel, Oct 17 2023
    
  • Mathematica
    Round[GoldenRatio^3*Range[0, 80]] (* G. C. Greubel, Oct 17 2023 *)
  • PARI
    a(n) = round(n*(((sqrt(5)+1))/2)^3); \\ Michel Marcus, Aug 28 2016
    
  • SageMath
    [round(golden_ratio^3*n) for n in range(81)] # G. C. Greubel, Oct 17 2023
Showing 1-3 of 3 results.