A004999 Sums of two nonnegative cubes.
0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126, 128, 133, 152, 189, 216, 217, 224, 243, 250, 280, 341, 343, 344, 351, 370, 407, 432, 468, 512, 513, 520, 539, 559, 576, 637, 686, 728, 729, 730, 737, 756, 793, 854, 855, 945, 1000, 1001
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
- Samuel S. Wagstaff, Jr., Equal Sums of Two Distinct Like Powers, J. Int. Seq., Vol. 25 (2022), Article 22.3.1.
- Index entries for sequences related to sums of cubes
Crossrefs
Programs
-
Haskell
a004999 n = a004999_list !! (n-1) a004999_list = filter c2 [1..] where c2 x = any (== 1) $ map (a010057 . fromInteger) $ takeWhile (>= 0) $ map (x -) $ tail a000578_list -- Reinhard Zumkeller, Dec 20 2013
-
Mathematica
Union[(#[[1]]^3+#[[2]]^3)&/@Tuples[Range[0,20],{2}]] (* Harvey P. Dale, Dec 04 2010 *)
-
PARI
is(n)=my(k1=ceil((n-1/2)^(1/3)), k2=floor((4*n+1/2)^(1/3)), L); fordiv(n,d,if(d>=k1 && d<=k2 && denominator(L=(d^2-n/d)/3)==1 && issquare(d^2-4*L), return(1))); 0 list(lim)=my(v=List());for(x=0,(lim+.5)^(1/3),for(y=0,min(x,(lim-x^3)^(1/3)),listput(v,x^3+y^3))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jun 12 2012
-
PARI
is(n)=my(L=sqrtnint(n-1,3)+1,U=sqrtnint(4*n,3));fordiv(n,m,if(L<=m&m<=U,my(ell=(m^2-n/m)/3);if(denominator(ell)==1&&issquare(m^2-4*ell),return(1))));0 \\ Charles R Greathouse IV, Apr 16 2013
-
PARI
T=thueinit('z^3+1); is(n)=n==0 || #select(v->min(v[1],v[2])>=0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014