A005063 Sum of squares of primes dividing n.
0, 4, 9, 4, 25, 13, 49, 4, 9, 29, 121, 13, 169, 53, 34, 4, 289, 13, 361, 29, 58, 125, 529, 13, 25, 173, 9, 53, 841, 38, 961, 4, 130, 293, 74, 13, 1369, 365, 178, 29, 1681, 62, 1849, 125, 34, 533, 2209, 13, 49, 29, 298, 173, 2809, 13, 146, 53, 370, 845, 3481, 38, 3721
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A005063 := proc(n) add(d^2, d= numtheory[factorset](n)) ; end proc; seq(A005063(n),n=1..40) ; # R. J. Mathar, Nov 08 2011
-
Mathematica
a[n_] := Total[FactorInteger[n][[All, 1]]^2]; a[1]=0; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 20 2017 *) Array[DivisorSum[#, #^2 &, PrimeQ] &, 61] (* Michael De Vlieger, Jul 11 2017 *)
-
PARI
a(n)=local(fm,t);fm=factor(n);t=0;for(k=1,matsize(fm)[1],t+=fm[k,1]^2);t \\ Franklin T. Adams-Watters, May 03 2009
-
PARI
a(n) = vecsum(apply(x->x^2, factor(n)[, 1])); \\ Michel Marcus, Sep 19 2020
-
Python
from sympy import primefactors def a(n): return sum(p**2 for p in primefactors(n)) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
-
Scheme
(define (A005063 n) (if (= 1 n) 0 (+ (A000290 (A020639 n)) (A005063 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = p^2.
G.f.: Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
(End)
Dirichlet g.f.: primezeta(s-2)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^2. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^2 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Extensions
More terms from Franklin T. Adams-Watters, May 03 2009
Comments