A005066 Sum of squares of odd primes dividing n.
0, 0, 9, 0, 25, 9, 49, 0, 9, 25, 121, 9, 169, 49, 34, 0, 289, 9, 361, 25, 58, 121, 529, 9, 25, 169, 9, 49, 841, 34, 961, 0, 130, 289, 74, 9, 1369, 361, 178, 25, 1681, 58, 1849, 121, 34, 529, 2209, 9, 49, 25, 298, 169, 2809, 9, 146, 49, 370, 841, 3481, 34, 3721, 961, 58, 0, 194, 130, 4489, 289, 538, 74, 5041, 9, 5329, 1369
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Total[Select[Divisors[n],OddQ[#]&&PrimeQ[#]&]^2],{n,60}] (* Harvey P. Dale, May 02 2012 *) Array[DivisorSum[#, #^2 &, And[PrimeQ@ #, OddQ@ #] &] &, 74] (* Michael De Vlieger, Jul 11 2017 *) f[2, e_] := 0; f[p_, e_] := p^2; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
-
PARI
a(n) = sumdiv(n, d, ((d%2) && isprime(d))*d^2); \\ Michel Marcus, Jan 04 2017
-
Python
from sympy import primefactors def a(n): return sum(p**2 for p in primefactors(n) if p % 2) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
-
Scheme
(define (A005066 n) (cond ((= 1 n) 0) ((even? n) (A005066 (/ n 2))) (else (+ (A000290 (A020639 n)) (A005066 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = 0 if p = 2, p^2 otherwise.
G.f.: Sum_{k>=2} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 04 2017
From Antti Karttunen, Jul 10 & 11 2017: (Start)
(End)
Extensions
More terms from Antti Karttunen, Jul 10 2017