A005067 Sum of cubes of odd primes dividing n.
0, 0, 27, 0, 125, 27, 343, 0, 27, 125, 1331, 27, 2197, 343, 152, 0, 4913, 27, 6859, 125, 370, 1331, 12167, 27, 125, 2197, 27, 343, 24389, 152, 29791, 0, 1358, 4913, 468, 27, 50653, 6859, 2224, 125, 68921, 370, 79507, 1331, 152, 12167, 103823, 27, 343, 125, 4940, 2197, 148877, 27, 1456, 343, 6886, 24389, 205379, 152
Offset: 1
Keywords
Links
- Harvey P. Dale (terms 1 .. 1000) & Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[{0},Table[Total[Select[Transpose[FactorInteger[n]][[1]],OddQ]^3],{n,2,50}]] (* Harvey P. Dale, Jun 09 2016 *) Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, OddQ@ #] &] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p^3)); \\ Michel Marcus, Jul 11 2017
-
Scheme
(define (A005067 n) (cond ((= 1 n) 0) ((even? n) (A005067 (/ n 2))) (else (+ (A000578 (A020639 n)) (A005067 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
Formula
Additive with a(p^e) = 0 if p = 2, p^3 otherwise.
G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 06 2017
From Antti Karttunen, Jul 10 2017: (Start)
(End)
Extensions
More terms from Antti Karttunen, Jul 10 2017