A005089 Number of distinct primes == 1 (mod 4) dividing n.
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Étienne Fouvry and Peter Koymans, On Dirichlet biquadratic fields, arXiv:2001.05350 [math.NT], 2020.
Crossrefs
Programs
-
Haskell
a005089 = sum . map a079260 . a027748_row -- Reinhard Zumkeller, Jan 07 2013
-
Magma
[#[p:p in PrimeDivisors(n)|p mod 4 eq 1]: n in [1..100]]; // Marius A. Burtea, Jan 16 2020
-
Maple
A005089 := proc(n) local a,pe; a := 0 ; for pe in ifactors(n)[2] do if modp(op(1,pe),4) =1 then a := a+1 ; end if; end do: a ; end proc: seq(A005089(n),n=1..100) ; # R. J. Mathar, Jul 22 2021
-
Mathematica
f[n_]:=Length@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,102}] (* Ray Chandler, Dec 18 2011 *) a[n_] := DivisorSum[n, Boole[PrimeQ[#] && Mod[#, 4] == 1]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
for(n=1,100,print1(sumdiv(n,d,isprime(d)*if((d-1)%4,0,1)),","))