A005119 Infinitesimal generator of x*(x + 1).
1, 1, 3, 16, 124, 1256, 15576, 226248, 3729216, 68179968, 1361836800, 29501349120, 693638208000, 17815908096000, 502048890201600, 15388268595840000, 500579319427891200, 16817771937344716800, 581609175119297740800
Offset: 1
Examples
From _Peter Bala_, Dec 09 2015: (Start) The Riordan array R = (1 + x, x*(1 + x)) is A030528. log(R) begins / 0 | 1 0 | -1 1*2 0 | 3/2! -1*2 1*3 0 |-16/3! (3/2!)*2 -1*3 1*4 0 |124/4! (-16/3!)*2 (3/2!)*3 -1*4 1*5 0 |... \ The first column begins [1, -1, 3/2!, -16/3! 124/4!, ...]. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..200
- Loïc Foissy, Cointeraction on noncrossing partitions and related polynomial invariants, arXiv:2501.18212 [math.CO], 2025. See pp. 21, 24.
- Gilbert Labelle, Sur l'Inversion et l'Iteration Continue des Séries Formelles, European Journal of Combinatorics, Vol. 1 Issue 2 (June 1980), 113-138.
Crossrefs
Cf. A030528.
Programs
-
Mathematica
max = 19; f[x_] := Sum[a[n+1]*x^n/n!, {n, 0, max}]; coes = CoefficientList[ Series[ f[x]-((1-x)^2/(1-2*x))*f[x-x^2], {x, 0, max}], x]; Array[a, max] /. Solve[a[1] == a[2] == 1 && Thread[coes == 0]][[1]] (* Jean-François Alcover, Nov 03 2011 *) nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (n-2)! *Sum[(-1)^(i+1)*Binomial[n-i+1,i+1]*a[[n-i]]/(n-i-1)!,{i,1,n-1}],{n,2,nmax}]; a (* Vaclav Kotesovec, Mar 12 2014 *)
-
PARI
{a(n)=if(n<1,0,if(n==1,1,(n-2)!*sum(i=1,n-1,(-1)^(i+1)*binomial(n-i+1,i+1)*a(n-i)/(n-i-1)!)))} \\ Paul D. Hanna, Dec 27 2007
Formula
a(n) = (n-2)!*Sum_{i=1..n-1} (-1)^(i+1)*C(n-i+1,i+1)*a(n-i)/(n-i-1)! for n>1 with a(1)=1. E.g.f. satisfies: A(x) = (1-x)^2/(1-2x)*A(x-x^2) where A(x) = Sum_{n>=0}a(n+1)*x^n/n! with offset so that A(0)=1. - Paul D. Hanna, Dec 27 2007
Extensions
More terms from Paul D. Hanna, Dec 27 2007
Comments