A005120 A sixth-order linear divisibility sequence: a(n+6) = -3*a(n+5) - 5*a(n+4) - 5*a(n+3) - 5*a(n+2) - 3*a(n+1) - a(n).
0, 1, -1, 1, -1, -1, 5, -8, 7, 1, -19, 43, -55, 27, 64, -211, 343, -307, -85, 911, -1919, 2344, -989, -3151, 9625, -15049, 12609, 5671, -42496, 85609, -100225, 33977, 154007, -437009, 657901, -513512, -335665, 1974097, -3808891, 4265379
Offset: 0
Examples
G.f. = x - x^2 + x^3 - x^4 - x^5 + 5*x^6 - 8*x^7 + 7*x^8 + ... - _Michael Somos_, Nov 13 2018
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- H. C. Williams, Edouard Lucas and Primality Testing, Wiley, 1998, p. 455. Math. Rev. 2000b:11139
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Duboue, Une suite récurrente remarquable, Europ. J. Combin., 4 (1983), 205-214.
- E. L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (-3,-5,-5,-5,-3,-1).
Crossrefs
Cf. A001608.
Programs
-
Magma
I:=[0,1,-1,1,-1,-1]; [n le 6 select I[n] else -3*Self(n-1)-5*Self(n-2)-5*Self(n-3)-5*Self(n-4)-3*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 20 2014
-
Mathematica
LinearRecurrence[{-3,-5,-5,-5,-3,-1},{0,1,-1,1,-1,-1},40] (* Harvey P. Dale, Jun 19 2014 *) CoefficientList[Series[x (1 + 2 x + 3 x^2 + 2 x^3 + x^4)/(1 + 3 x + 5 x^2 + 5 x^3 + 5 x^4 + 3 x^5 + x^6), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 20 2014 *) a[ n_] := Sign[n] SeriesCoefficient[ x (1 + x + x^2)^2 / (1 + 3 x + 5 x^2 + 5 x^3 + 5 x^4 + 3 x^5 + x^6), {x, 0, Abs @ n}]; (* Michael Somos, Nov 13 2018 *) a[ n_] := Module[ {a, b, c}, {a, b, c} = Table[ Root[#^3 + #^2 - 1 &, k], {k, 3}]; (a^n - b^n) (b^n - c^n) (c^n - a^n) / ((a - b) (b - c) (c - a)) // FullSimplify]; (* Michael Somos, Nov 13 2018 *)
-
PARI
{a(n) = sign(n) * polcoeff( x*(1 + 2*(x + x^3) + 3*x^2 + x^4) / (1 + 3*(x + x^5) + 5*(x^2 + x^3 + x^4) + x^6) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Aug 02 2002 */
Formula
G.f.: x * (1 + 2*x + 3*x^2 + 2*x^3 + x^4) / (1 + 3*x + 5*x^2 + 5*x^3 + 5*x^4 + 3*x^5 + x^6). - Michael Somos, Aug 02 2002
a(n) = (a^n - b^n)*(b^n - c^n)*(c^n - a^n)/((a - b)*(b - c)*(c - a)), where a, b, c denote the roots of the cubic equation x^3 + x^2 - 1 = 0. - Peter Bala, Mar 04 2014
a(n) = -3*a(n-1) - 5*a(n-2) - 5*a(n-3) - 5*a(n-4) - 3*a(n-5) - a(n-6) for n>5. - Vincenzo Librandi, Jun 20 2014
a(n) = -a(-n) for all n in Z. - Michael Somos, Nov 13 2018
Extensions
Edited by Michael Somos, Aug 02 2002
Comments