cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138164 Row sums of Riordan array (c(-x^2),xc(-x^2)^2)^(-1) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 109, 262, 622, 1516, 3653, 8988, 21883, 54213, 133004, 331233, 817432, 2044151, 5068346, 12716872, 31651555, 79636493, 198843284, 501466519, 1255489165, 3172569392, 7961388439, 20152910577, 50674576772
Offset: 0

Views

Author

Paul Barry, Mar 03 2008

Keywords

Comments

Hankel transform is A005161.
A transform of the F(n+1) by (1,x(1-x^2))^(-1).
(c(-x^2),xc(-x^2)^2)^(-1) factors as (1,x(1-x^2))^(-1)*(1/(1-x^2),x/(1-x^2)).
It appears that a(n) is the number of Dyck paths (A000108) of semilength n in which all non-return descents are of even length (a return descent is a maximal sequence of downsteps that returns the path to ground level). For example, a(4) = 9 counts, among others, UUUDDUDD and UDUUUDDD but not UUDUUDDD. - David Callan, Nov 13 2021

Programs

  • Maple
    vx := 2/sqrt(3)*sin(arcsin(x*3*sqrt(3)/2)/3) ;
    A138164 := proc(n)
            1/(1-vx-vx^2) ;
            coeftayl(%,x=0,n) ;
            subs(4^(1/2)=2,%) ;
    end proc: # R. J. Mathar, Jul 28 2016
  • Mathematica
    CoefficientList[Series[1/(1/3 - 2*Sin[1/3*ArcSin[3*Sqrt[3]*x/2]]/Sqrt[3] + 2*Cos[2/3*ArcSin[3*Sqrt[3]*x/2]]/3), {x, 0, 30}], x] (* Vaclav Kotesovec, Nov 15 2021 *)
  • PARI
    my(x='x+O('x^66)); v=serreverse(x*(1-x^2)); Vec(1/(1-v-v^2)) \\ Joerg Arndt, Feb 24 2015

Formula

G.f.: 1/(1-v-v^2) where v=(2/sqrt(3))*sin(arcsin(x*3*sqrt(3)/2)/3) is the series reversion of x(1-x^2). [Corrected by Paul D. Hanna, Feb 24 2015]
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 1, 0, 0, ...
1, 0, 1, 0, 1, 0, 1, 0, ...
1, 1, 0, 1, 0, 1, 0, 1, ...
...
a(n) = top left term of M^n. a(n+1) = sum of top row terms of M^n. Example: top row of M^3 = (4, 3, 1, 1), where a(3) = 4 and a(4) = 9 = (4 + 3 + 1 + 1). (End)
v(x) = Sum_{n>=1} A001764(n-1)*x^(2*n-1). - Paul D. Hanna, Feb 24 2015
Conjecture: -8*n*(n-1)*a(n) + 12*(n+3)*(n-1)*a(n-1) + 2*(89*n^2-512*n+651)*a(n-2) + 3*(-127*n^2+715*n-966)*a(n-3) + 3*(-247*n^2+2431*n-5698)*a(n-4) + 9*(75*n-341)*(3*n-16)*a(n-5) - 72*(3*n-14)*(3*n-16)*a(n-6) = 0. - R. J. Mathar, Feb 24 2015
From Vaclav Kotesovec, Nov 15 2021: (Start)
Recurrence (of order 4): 4*(n-1)*n*(11*n^2 - 50*n + 48)*a(n) = 12*(n-1)*(11*n^3 - 50*n^2 + 66*n - 40)*a(n-1) + (253*n^4 - 2294*n^3 + 6379*n^2 - 5898*n + 720)*a(n-2) - 3*(297*n^4 - 2538*n^3 + 7347*n^2 - 7946*n + 2000)*a(n-3) + 3*(3*n - 10)*(3*n - 8)*(11*n^2 - 28*n + 9)*a(n-4).
a(n) ~ (45*(1 - (-1)^n) + 26*sqrt(3)*(1 + (-1)^n)) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2) * 2^(n + 1/2)). (End)

A134565 Expansion of reversion of (x - 2*x^2) / (1 - x)^3.

Original entry on oeis.org

1, -1, 2, -3, 7, -12, 30, -55, 143, -273, 728, -1428, 3876, -7752, 21318, -43263, 120175, -246675, 690690, -1430715, 4032015, -8414640, 23841480, -50067108, 142498692, -300830572, 859515920, -1822766520, 5225264024, -11124755664, 31983672534, -68328754959
Offset: 1

Views

Author

Michael Somos, Nov 01 2007

Keywords

Examples

			G.f. = x - x^2 + 2*x^3 - 3*x^4 + 7*x^5 - 12*x^6 + 30*x^7 - 55*x^8 + 143*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = Quotient[n, 2]}, If[n < 1, 0, -(-1)^n Binomial[n + m, n - m] / (2 m + 1)]]; (* Michael Somos, Oct 16 2015 *)
    a[ n_] := If[n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[(x - 2 x^2) / (1 - x)^3, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Oct 16 2015 *)
    a[n_] := (-1)^(n-1)*Binomial[2*n, n-1]*Hypergeometric2F1[-n+1, n, -2*n, -1] / n; Flatten[Table[a[n], {n, 1, 32}]] (* Detlef Meya, Dec 26 2023 *)
  • PARI
    {a(n) = my( m = n\2); if( n<1, 0, -(-1)^n * binomial( n + m, n - m) / (2 * m + 1))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - 2 * x^2) / (1 - x)^3 + x * O(x^n) ), n))};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / ( 1 + 1 / serreverse( x - x^3 + x * O(x^n) )), n))};

Formula

Given g.f. A(x), then 1 = (1/A(x) + 1/A(-x)) / 2.
a(n) = -(-1)^n * binomial(n + m, n - m) / (2*m + 1) where m = floor(n/2) if n>0.
From Michael Somos, Apr 13 2012 (Start)
a(n) = -(-1)^n * A047749(n) unless n=0. a(2*n) = - A001764(n) unless n=0. a(2*n + 1) = A006013(n).
Reversion of A080956 with offset 1.
Hankel transform is A005161 omitting first 1.
n * a(n) = -(-1)^n * A099576(n-1). (End)
D-finite with recurrence +8*n*(n+1)*a(n) -36*n*(n-2)*a(n-1) +6*(-9*n^2+18*n-14)*a(n-2) +27*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Sep 24 2021
a(n) = (-1)^(n-1)*binomial(2*n, n-1)*hypergeom([-n+1, n], [-2*n], -1) / n. - Detlef Meya, Dec 26 2023
Showing 1-2 of 2 results.