A005169 Number of fountains of n coins.
1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0
Examples
An example of a fountain with 19 coins: ... O . O O .. O O O O O O . O . O O O O O O O O O From _Peter Bala_, Dec 26 2012: (Start) F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))). F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))). (End)
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4178 (first 501 terms from T. D. Noe)
- Peter Bala, Some simple continued fraction expansions
- P. Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics 32 (1980), pp. 125-161.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 331.
- Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 4.
- Atli Fannar Franklín, Anders Claesson, Christian Bean, Henning Úlfarsson, and Jay Pantone, Restricted Permutations Enumerated by Inversions, arXiv:2406.16403 [cs.DM], 2024. See p. 2.
- M. L. Glasser, V. Privman, N. M. Svrakic, Temperley's triangular lattice compact cluster model: exact solution in terms of the q series. J. Phys. A 20 (1987), no. 18, L1275-L1280.
- H. W. Gould, R. K. Guy, and N. J. A. Sloane, Correspondence, 1987.
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, The strong law of small numbers, Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Kival Ngaokrajang, Illustration for initial terms
- A. M. Odlyzko and H. S. Wilf, The editor's corner: n coins in a fountain, Amer. Math. Monthly, 95 (1988), 840-843.
- A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995; see Example 10.7 (pdf, ps)
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
Crossrefs
Programs
-
Haskell
a005169 0 = 1 a005169 n = a168396 n 1 -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
-
Maple
P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008 # second Maple program: A005169_G:= proc(x,NK); Digits:=250; Q2:=1; for k from NK by -1 to 0 do Q1:=1-x^k/Q2; Q2:=Q1; od; Q3:=Q2; S:=1-Q3; end: series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
-
Mathematica
m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *) max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *) b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]]; c[n_] := b[n, 0] - b[n-1, 0]; c /@ Range[0, 50] // Accumulate (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
-
PARI
/* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */ N=30; x='x+O('x^N); P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j)); G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) ); Vec(G) /* Joerg Arndt, Feb 10 2011 */
-
PARI
/* As a continued fraction: */ {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
-
PARI
/* By the Rogers-Ramanujan continued fraction identity: */ {a(n)=local(A=1+x,P,Q); P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k)); Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k)); A=P/(Q+x*O(x^n));polcoeff(A,n)} /* Paul D. Hanna */
Formula
A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
Extensions
More terms from David W. Wilson, Apr 30 2001
Comments