A005171 Characteristic function of nonprimes: 0 if n is prime, else 1.
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1
References
- Douglas Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
- Index entries for characteristic functions
Programs
-
Haskell
a005171 = (1 -) . a010051 -- Reinhard Zumkeller, Mar 30 2014
-
Maple
A005171 := proc(n) if isprime(n) then 0 ; else 1 ; end if; end proc: # R. J. Mathar, May 26 2017
-
Mathematica
a[n_] := If[PrimeQ@ n, 0, 1]; Array[a, 105] (* Robert G. Wilson v, Jun 20 2011 *) nn = 105; t[n_, k_] := t[n, k] = If[n == k, 1, If[k == 1, 1 - Product[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 1], 1]]; Table[t[n, 1], {n, 1, nn}] (* Mats Granvik, Sep 21 2013 *)
-
PARI
a(n)=if(n<1, 0, !isprime(n)) /* Michael Somos, Jun 08 2005 */
-
Python
from sympy import isprime def a(n): return int(not isprime(n)) print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Oct 28 2021
Formula
a(n) = (1/n)* Sum_{ d divides n } mu(d)*A023890(n/d). E.g., a(6) = 1 since the 6th term of A023890 is 7 and the first term is 1. [edited by Michel Marcus, Dec 14 2023]
a(n) = 1 - A010051(n). - Jonathan Vos Post, Dec 30 2007
a(n) equals the first column in a table T defined by the recurrence: If n = k then T(n,k) = 1 else if k = 1 then T(n,k) = 1 - Product_{k divides n} of T(n,k), else if k divides n then T(n,k) = T(n/k,1). This is true since T(n,k) = 0 when k divides n and n/k is prime which results in Product_{k divides n} = 0 for the composite numbers and where k ranges from 2 to n. Therefore there is a remaining 1 in the expression 1-Product_{k divides n}, in the first column. Provided below is a Mathematica program as an illustration. - Mats Granvik, Sep 21 2013
Comments