cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005174 Number of rooted trees with 4 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

0, 0, 10, 124, 890, 5060, 25410, 118524, 527530, 2276020, 9613010, 40001324, 164698170, 672961380, 2734531810, 11066546524, 44652164810, 179768037140, 722553165810, 2900661482124, 11634003919450, 46630112719300, 186802788139010, 748058256616124
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A094262.

Programs

  • Maple
    A005174:=2*z**2*(5+12*z)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation

Formula

The terms a(1)-a(18) are given by a(n) = (8/3)*(4^n - 4) - 9*3^n + 11*2^n + 5. - John W. Layman, Jul 20 1999
Formula of Layman matches the proven formula in McMorris and Zaslavsky. - Sean A. Irvine, Apr 12 2016
E.g.f.: (1/3)*(-17*exp(x) + 66*exp(2*x) - 81*exp(3*x) + 32*exp(4*x)). - Ilya Gutkovskiy, Apr 12 2016
G.f.: 2*x^3*(5 + 12*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)). - Andrew Howroyd, Mar 28 2025

Extensions

Name clarified by Andrew Howroyd, Mar 28 2025