A005237 Numbers k such that k and k+1 have the same number of divisors.
2, 14, 21, 26, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 104, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 189, 201, 202, 205, 213, 214, 217, 218, 230, 231, 242, 243, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 344, 374, 375, 381, 387
Offset: 1
Keywords
Examples
14 is in the sequence because 14 and 15 are both in A030513. 104 is in the sequence because 104 and 105 are both in A030626. - _R. J. Mathar_, Jan 09 2022
References
- R. K. Guy, Unsolved Problems in Number Theory, B18.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 840.
- P. Erdős, On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540.
- P. Erdős, C. Pomerance, and A. Sárközy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hungarica 49 (1987), pp. 251-259. [alternate link]
- D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), pp. 141-149.
- Adolf Hildebrand, The divisor function at consecutive integers, Pacific J. Math. 129:2 (1987), pp. 307-319.
Crossrefs
Programs
-
Mathematica
A005237Q = DivisorSigma[0, #] == DivisorSigma[0, # + 1] &; Select[Range[387], A005237Q] (* JungHwan Min, Mar 02 2017 *) SequencePosition[DivisorSigma[0,Range[400]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 25 2019 *)
-
PARI
is(n)=numdiv(n)==numdiv(n+1) \\ Charles R Greathouse IV, Aug 17 2011
-
Python
from sympy import divisor_count as tau [n for n in range(1,401) if tau(n) == tau(n+1)] # Karl V. Keller, Jr., Jul 10 2020
Extensions
More terms from Jud McCranie, Oct 15 1997
Comments