A005261 a(n) = Sum_{k = 0..n} C(n,k)^5.
1, 2, 34, 488, 9826, 206252, 4734304, 113245568, 2816649826, 72001228052, 1883210876284, 50168588906768, 1357245464138656, 37198352117916992, 1030920212982957184, 28847760730478655488, 814066783370083977826
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45.
- M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
- Eric Weisstein's World of Mathematics, Binomial sums.
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes.
- Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794
Crossrefs
Programs
-
Maple
a := n -> hypergeom([seq(-n, i=1..5)],[seq(1, i=1..4)], -1): seq(simplify(a(n)),n=0..16); # Peter Luschny, Jul 27 2016
-
Mathematica
RecurrenceTable[{32*(55n^2+33n+6)*(n-1)^4*a[n-2]-(19415n^6-27181n^5+7453n^4+3289n^3-956n^2-276n+96)*a[n-1]-(1155n^6+693n^5-732n^4-715n^3+45n^2+210n+56)*a[n]+(55n^2-77n+28)*(n+1)^4*a[n+1]==0,a[0]==1,a[1]==2,a[2]==34},a,{n,0,25}] (* or directly *) Table[Sum[Binomial[n,k]^5,{k,0,n}],{n,0,25}] (* Vaclav Kotesovec, Apr 27 2012 *)
-
PARI
a(n) = sum(k=0, n, binomial(n, k)^5); \\ Michel Marcus, Mar 09 2016
-
Python
def A005261(n): m, g = 1, 0 for k in range(n+1): g += m m = m*(n-k)**5//(k+1)**5 return g # Chai Wah Wu, Oct 04 2022
Formula
a(n) ~ 4*5^(-1/2)*Pi^-2*n^-2*2^(5*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
Recurrence (M. A. Perlstadt, 1987): 32*(55*n^2 + 33*n + 6)*(n - 1)^4*a(n-2) - (19415*n^6 - 27181*n^5 + 7453*n^4 + 3289*n^3 - 956*n^2 - 276*n + 96)*a(n-1) - (1155*n^6 + 693*n^5 - 732*n^4 - 715*n^3 + 45*n^2 + 210*n + 56)*a(n) + (55*n^2 - 77*n + 28)*(n + 1)^4*a(n+1) = 0. [Vaclav Kotesovec, Apr 27 2012]
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^5*C(n,k)^5 = C(n,r)^5*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^5 = (Sum_{n>=0} x^n / (n!)^5)^2. - Ilya Gutkovskiy, Jul 17 2020
From Peter Bala, Nov 01 2024: (Start)
For n >= 1, a(n) = 2 * Sum_{k = 0..n-1} binomial(n, k)^4 * binomial(n-1, k).
For n >= 1, a(n) = 2 * hypergeom([-n, -n, -n, -n, -n + 1], [1, 1, 1, 1], -1). (End)
Extensions
More terms from Matthew Conroy, Mar 16 2006
Comments