cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005264 Number of labeled rooted Greg trees with n nodes.

Original entry on oeis.org

1, 3, 22, 262, 4336, 91984, 2381408, 72800928, 2566606784, 102515201984, 4575271116032, 225649908491264, 12187240730230528, 715392567595403520, 45349581052869924352, 3087516727770990992896, 224691760916830871873536
Offset: 1

Views

Author

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and labeled and the white nodes have at least 2 children. - Christian G. Bower, Nov 15 1999

Examples

			G.f. = x + 3*x^2 + 22*x^3 + 262*x^4 + 4336*x^5 + 91984*x^6 + 2381408*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Stirling transform of A005172 (hence corrected and extended). - John W. Layman

Programs

  • Maple
    T := proc(n,k) option remember; if k=0 and (n=0 or n=1) then return(1) fi; if k<0 or k>n then return(0) fi;
    (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1) end:
    A005264 := proc(n) add(T(n,k)*(-1)^k*2^(n-k-1), k=0..n-1) end;
    seq(A005264(n),n=1..17); # Peter Luschny, Nov 10 2012
  • Mathematica
    max = 17; f[x_] := -1/2 - ProductLog[-E^(-1/2)*(x + 1)/2]; Rest[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!] (* Jean-François Alcover, May 23 2012, after Peter Bala *)
    a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ Exp[-x] (1 + 2 x) - 1, {x, 0, n}]], n]]; (* Michael Somos, Jun 07 2012 *)
  • Maxima
    a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum(1/(l!*(j-l)!)*sum(((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!,i,0,n+j-1),l,1,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, May 04 2012 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, for( k= 1, n, A += x * O(x^k); A = truncate( (1 + x) * exp(A) - 1 - A) ); n! * polcoeff( A, n))}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( serreverse( exp( -x + x * O(x^n) ) * (1 + 2*x) - 1), n))}; /* Michael Somos, Mar 26 2011 */
    
  • Sage
    @CachedFunction
    def T(n,k):
        if k==0 and (n==0 or n==1): return 1
        if k<0 or k>n: return 0
        return (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1)
    A005264 = lambda n: add(T(n,k)*(-1)^k*2^(n-k-1) for k in (0..n-1))
    [A005264(n) for n in (1..17)]  # Peter Luschny, Nov 10 2012

Formula

Exponential reversion of A157142 with offset 1. - Michael Somos, Mar 26 2011
The REVEGF transform of the odd numbers [1,3,5,7,9,11,...] is [1, -3, 22, -262, 4336, -91984, 2381408, ...] - N. J. A. Sloane, May 26 2017
E.g.f. A(x) = y satisfies y' = (1 + 2*y) / ((1 - 2*y) * (1 + x)). - Michael Somos, Mar 26 2011
E.g.f. A(x) satisfies (1 + x) * exp(A(x)) = 1 + 2 * A(x).
From Peter Bala, Sep 08 2011: (Start)
A(x) satisfies the separable differential equation A'(x) = exp(A(x))/(1-2*A(x)) with A(0) = 0. Thus the inverse function A^-1(x) = int {t = 0..x} (1-2*t)/exp(t) = exp(-x)*(2*x+1)-1 = x-3*x^2/2!+5*x^3/3!-7*x^4/4!+.... A(x) = -1/2-LambertW(-exp(-1/2)*(x+1)/2).
The expansion of A(x) can be found by inverting the above integral using the method of [Dominici, Theorem 4.1] to arrive at the result a(n) = D^(n-1)(1) evaluated at x = 0, where D denotes the operator g(x) -> d/dx(exp(x)/(1-2*x)*g(x)). Compare with [Dominici, Example 9].
(End)
a(n)=sum(k=1..n-1, (n+k-1)!*sum(j=1..k, 1/(k-j)!*sum(l=1..j, 1/(l!*(j-l)!)* sum(i=0..n+j-1, ((-1)^(i+l)*l^i*binomial(l,n+j-i-1)*2^(n+j-i-1))/i!)))), n>1, a(1)=1. - Vladimir Kruchinin, May 04 2012
Let T(n,k) = 1 if k=0 and (n=0 or n=1); T(n,k) = 0 if k<0 or k>n; and otherwise T(n,k) = (n-1)*T(n-1,k-1)+(3*n-k-4)*T(n-1,k)-(k+1)*T(n-1,k+1). Define polynomials p(n,w) = w^n*sum_{k=0..n-1}(T(n,k)*w^k)/(1+w)^(2*n-1), then a(n) = (-1)^n*p(n,-1/2). - Peter Luschny, Nov 10 2012
a(n) ~ n^(n-1) / (sqrt(2) * exp(n/2) * (2-exp(1/2))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
E.g.f.: -W(-(1+x)*exp(-1/2)/2)-1/2 where W is the Lambert W function. - Robert Israel, Mar 28 2017