A005266 a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the largest prime factor of (b(n)-1).
3, 2, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941
Offset: 1
References
- R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.
Links
- R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
- Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
- S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy)
- Status of a(15) in factordb.com.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=1, 3, max(factorset(mul(a(i), i=1..n-1)-1)[])) end: seq(a(n), n=1..10); # Alois P. Heinz, Sep 26 2013
-
Mathematica
a[0] = 3; a[n_] := a[n] = Block[{p = Times @@ (a[#] & /@ Range[0, n - 1]) - 1}, FactorInteger[p][[-1, 1]]]; Array[a, 13] (* Robert G. Wilson v, Sep 26 2013 *)
Extensions
a(14) from Joe K. Crump (joecr(AT)carolina.rr.com), Jul 26 2000
Comments