cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A000058 Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.

Original entry on oeis.org

2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

Keywords

Comments

Also called Euclid numbers, because a(n) = a(0)*a(1)*...*a(n-1) + 1 for n>0, with a(0)=2. - Jonathan Sondow, Jan 26 2014
Another version of this sequence is given by A129871, which starts with 1, 2, 3, 7, 43, 1807, ... .
The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + ... .
Take a square. Divide it into 2 equal rectangles by drawing a horizontal line. Divide the upper rectangle into 2 squares. Now you can divide the lower one into another 2 squares, but instead of doing so draw a horizontal line below the first one so you obtain a (2+1 = 3) X 1 rectangle which can be divided in 3 squares. Now you have a 6 X 1 rectangle at the bottom. Instead of dividing it into 6 squares, draw another horizontal line so you obtain a (6+1 = 7) X 1 rectangle and a 42 X 1 rectangle left, etc. - Néstor Romeral Andrés, Oct 29 2001
More generally one may define f(1) = x_1, f(2) = x_2, ..., f(k) = x_k, f(n) = f(1)*...*f(n-1)+1 for n > k and natural numbers x_i (i = 1, ..., k) which satisfy gcd(x_i, x_j) = 1 for i <> j. By definition of the sequence we have that for each pair of numbers x, y from the sequence gcd(x, y) = 1. An interesting property of a(n) is that for n >= 2, 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) = (a(n)-2)/(a(n)-1). Thus we can also write a(n) = (1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 2 )/( 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), May 10 2001; [corrected by Michel Marcus, Mar 27 2019]
A greedy sequence: a(n+1) is the smallest integer > a(n) such that 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n+1) doesn't exceed 1. The sequence gives infinitely many ways of writing 1 as the sum of Egyptian fractions: Cut the sequence anywhere and decrement the last element. 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/3 + 1/7 + 1/42 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = ... . - Ulrich Schimke, Nov 17 2002; [corrected by Michel Marcus, Mar 27 2019]
Consider the mapping f(a/b) = (a^3 + b)/(a + b^3). Starting with a = 1, b = 2 and carrying out this mapping repeatedly on each new (reduced) rational number gives 1/2, 1/3, 4/28 = 1/7, 8/344 = 1/43, ..., i.e., 1/2, 1/3, 1/7, 1/43, 1/1807, ... . Sequence contains the denominators. Also the sum of the series converges to 1. - Amarnath Murthy, Mar 22 2003
a(1) = 2, then the smallest number == 1 (mod all previous terms). a(2n+6) == 443 (mod 1000) and a(2n+7) == 807 (mod 1000). - Amarnath Murthy, Sep 24 2003
An infinite coprime sequence defined by recursion.
Apart from the initial 2, a subsequence of A002061. It follows that no term is a square.
It appears that a(k)^2 + 1 divides a(k+1)^2 + 1. - David W. Wilson, May 30 2004. This is true since a(k+1)^2 + 1 = (a(k)^2 - a(k) + 1)^2 +1 = (a(k)^2-2*a(k)+2)*(a(k)^2 + 1) (a(k+1)=a(k)^2-a(k)+1 by definition). - Pab Ter (pabrlos(AT)yahoo.com), May 31 2004
In general, for any m > 0 coprime to a(0), the sequence a(n+1) = a(n)^2 - m*a(n) + m is infinite coprime (Mohanty). This sequence has (m,a(0))=(1,2); (2,3) is A000215; (1,4) is A082732; (3,4) is A000289; (4,5) is A000324.
Any prime factor of a(n) has -3 as its quadratic residue (Granville, exercise 1.2.3c in Pollack).
Note that values need not be prime, the first composites being 1807 = 13 * 139 and 10650056950807 = 547 * 19569939581. - Jonathan Vos Post, Aug 03 2008
If one takes any subset of the sequence comprising the reciprocals of the first n terms, with the condition that the first term is negated, then this subset has the property that the sum of its elements equals the product of its elements. Thus -1/2 = -1/2, -1/2 + 1/3 = -1/2 * 1/3, -1/2 + 1/3 + 1/7 = -1/2 * 1/3 * 1/7, -1/2 + 1/3 + 1/7 + 1/43 = -1/2 * 1/3 * 1/7 * 1/43, and so on. - Nick McClendon, May 14 2009
(a(n) + a(n+1)) divides a(n)*a(n+1)-1 because a(n)*a(n+1) - 1 = a(n)*(a(n)^2 - a(n) + 1) - 1 = a(n)^3 - a(n)^2 + a(n) - 1 = (a(n)^2 + 1)*(a(n) - 1) = (a(n) + a(n)^2 - a(n) + 1)*(a(n) - 1) = (a(n) + a(n+1))*(a(n) - 1). - Mohamed Bouhamida, Aug 29 2009
This sequence is also related to the short side (or hypotenuse) of adjacent right triangles, (3, 4, 5), (5, 12, 13), (13, 84, 85), ... by A053630(n) = 2*a(n) - 1. - Yuksel Yildirim, Jan 01 2013, edited by M. F. Hasler, May 19 2017
For n >= 4, a(n) mod 3000 alternates between 1807 and 2443. - Robert Israel, Jan 18 2015
The set of prime factors of a(n)'s is thin in the set of primes. Indeed, Odoni showed that the number of primes below x dividing some a(n) is O(x/(log x log log log x)). - Tomohiro Yamada, Jun 25 2018
Sylvester numbers when reduced modulo 864 form the 24-term arithmetic progression 7, 43, 79, 115, 151, 187, 223, 259, 295, 331, ..., 763, 799, 835 which repeats itself until infinity. This was first noticed in March 2018 and follows from the work of Sondow and MacMillan (2017) regarding primary pseudoperfect numbers which similarly form an arithmetic progression when reduced modulo 288. Giuga numbers also form a sequence resembling an arithmetic progression when reduced modulo 288. - Mehran Derakhshandeh, Apr 26 2019
Named after the English mathematician James Joseph Sylvester (1814-1897). - Amiram Eldar, Mar 09 2024
Guy askes if it is an irrationality sequence (see Guy, 1981). - Stefano Spezia, Oct 13 2024

Examples

			a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
  • Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005267, A000945, A000946, A005265, A005266, A075442, A007018, A014117, A054377, A002061, A118227, A126263, A007996 (primes dividing some term), A323605 (smallest prime divisors), A091335 (number of prime divisors), A129871 (a variant starting with 1).

Programs

  • Haskell
    a000058 0 = 2
    a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
    -- James Spahlinger, Oct 09 2012
    
  • Haskell
    a000058_list = iterate a002061 2  -- Reinhard Zumkeller, Dec 18 2013
    
  • Julia
    a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
    [a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
  • Maple
    A[0]:= 2:
    for n from 1 to 12 do
    A[n]:= A[n-1]^2 - A[n-1]+1
    od:
    seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
  • Mathematica
    a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
    NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
    RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
  • Maxima
    a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
    makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
    
  • PARI
    a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
    
  • PARI
    A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
    
  • PARI
    a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
    
  • Python
    A000058 = [2]
    for n in range(1, 10):
        A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = 1 + a(0)*a(1)*...*a(n-1).
a(n) = a(n-1)*(a(n-1)-1) + 1; Sum_{i>=0} 1/a(i) = 1. - Néstor Romeral Andrés, Oct 29 2001
Vardi showed that a(n) = floor(c^(2^(n+1)) + 1/2) where c = A076393 = 1.2640847353053011130795995... - Benoit Cloitre, Nov 06 2002 (But see the Aho-Sloane paper!)
a(n) = A007018(n+1)+1 = A007018(n+1)/A007018(n) [A007018 is a(n) = a(n-1)^2 + a(n-1), a(0)=1]. - Gerald McGarvey, Oct 11 2004
a(n) = sqrt(A174864(n+1)/A174864(n)). - Giovanni Teofilatto, Apr 02 2010
a(n) = A014117(n+1)+1 for n = 0,1,2,3,4; a(n) = A054377(n)+1 for n = 1,2,3,4. - Jonathan Sondow, Dec 07 2013
a(n) = f(1/(1-(1/a(0) + 1/a(1) + ... + 1/a(n-1)))) where f(x) is the smallest integer > x (see greedy algorithm above). - Robert FERREOL, Feb 22 2019
From Amiram Eldar, Oct 29 2020: (Start)
Sum_{n>=0} (-1)^n/(a(n)-1) = A118227.
Sum_{n>=0} (-1)^n/a(n) = 2 * A118227 - 1. (End)

A000945 Euclid-Mullin sequence: a(1) = 2, a(n+1) is smallest prime factor of 1 + Product_{k=1..n} a(k).

Original entry on oeis.org

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357
Offset: 1

Views

Author

Keywords

Comments

"Does the sequence ... contain every prime? ... [It] was considered by Guy and Nowakowski and later by Shanks, [Wagstaff 1993] computed the sequence through the 43rd term. The computational problem inherent in continuing the sequence further is the enormous size of the numbers that must be factored. Already the number a(1)* ... *a(43) + 1 has 180 digits." - Crandall and Pomerance
If this variant of Euclid-Mullin sequence is initiated either with 3, 7 or 43 instead of 2, then from a(5) onwards it is unchanged. See also A051614. - Labos Elemer, May 03 2004
Wilfrid Keller informed me that a(1)* ... *a(43) + 1 was factored as the product of two primes on Mar 09 2010 by the GNFS method. See the post in the Mersenne Forum for more details. The smaller 68-digit prime is a(44). Terms a(45)-a(47) were easy to find. Finding a(48) will require the factorization of a 256-digit number. See the b-file for the four new terms. - T. D. Noe, Oct 15 2010
On Sep 11 2012, Ryan Propper factored the 256-digit number by finding a 75-digit factor by using ECM. Finding a(52) will require the factorization of a 335-digit number. See the b-file for the terms a(48) to a(51). - V. Raman, Sep 17 2012
Needs longer b-file. - N. J. A. Sloane, Dec 18 2015
A056756 gives the position of the k-th prime in this sequence for each k. - Jianing Song, May 07 2021
Named after the Greek mathematician Euclid (flourished c. 300 B.C.) and the American engineer and mathematician Albert Alkins Mullin (1933-2017). - Amiram Eldar, Jun 11 2021
In Ribenboim 2004, a wrong value of a(8) is given, 6221271 instead of 6221671. - Stefano Spezia, Mar 27 2025

Examples

			a(5) is equal to 13 because 2*3*7*43 + 1 = 1807 = 13 * 139.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 6.
  • Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, Vol. 8 (1993), pp. 23-32.

Crossrefs

Programs

  • Maple
    a :=n-> if n = 1 then 2 else numtheory:-divisors(mul(a(i),i = 1 .. n-1)+1)[2] fi: seq(a(n), n=1..15);
    # Robert FERREOL, Sep 25 2019
  • Mathematica
    f[1]=2; f[n_] := f[n] = FactorInteger[Product[f[i], {i, 1, n - 1}] + 1][[1, 1]]; Table[f[n], {n, 1, 46}]
    nxt[{p_,a_}]:=With[{c=FactorInteger[p+1][[1,1]]},{p*c,c}]; Rest[NestList[nxt,{1,2},20][[;;,2]]] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    print1(k=2);for(n=2,20,print1(", ",p=factor(k+1)[1,1]);k*=p) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    P=[];until(,print(P=concat(P,factor(vecprod(P)+1)[1,1]))) \\ Jeppe Stig Nielsen, Apr 01 2024

A000946 Euclid-Mullin sequence: a(1) = 2, a(n+1) is the largest prime factor of 1 + Product_{k=1..n} a(k).

Original entry on oeis.org

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, 1368845206580129, 889340324577880670089824574922371, 20766142440959799312827873190033784610984957267051218394040721
Offset: 1

Views

Author

Keywords

Comments

Cox and van der Poorten show that 5, 11, 13, 17, ... (A216227) are not members of this sequence. - Charles R Greathouse IV, Jul 02 2007
Booker's abstract claims: "We consider the second of Mullin's sequences of prime numbers related to Euclid's proof that there are infinitely many primes. We show in particular that it omits infinitely many primes, confirming a conjecture of Cox and van der Poorten."

References

  • R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[1] = 2; f[n_] := f[n] = FactorInteger[Product[f[i], {i, 1, n - 1}] + 1][[-1, 1]]; Table[f[n], {n, 1, 10}] (* Alonso del Arte, Jun 25 2011 based on the program given for A000945 *)
  • PARI
    gpf(n)=my(f=factor(n)[, 1]);f[#f];
    first(m)=my(v=vector(m));v[1]=2;for(i=2,m,v[i]=gpf(1+prod(j=1,i-1,v[j])));v; \\ Anders Hellström, Aug 14 2015

Extensions

Extended by Andrew R. Booker, Mar 13 2013

A005265 a(1)=3, b(n) = Product_{k=1..n} a(k), a(n+1) is the smallest prime factor of b(n)-1.

Original entry on oeis.org

3, 2, 5, 29, 11, 7, 13, 37, 32222189, 131, 136013303998782209, 31, 197, 19, 157, 17, 8609, 1831129, 35977, 508326079288931, 487, 10253, 1390043, 18122659735201507243, 25319167, 9512386441, 85577, 1031, 3650460767, 107, 41, 811, 15787, 89, 68168743, 4583, 239, 1283, 443, 902404933, 64775657, 2753, 23, 149287, 149749, 7895159, 79, 43, 1409, 184274081, 47, 569, 63843643
Offset: 1

Views

Author

Keywords

Comments

Suggested by Euclid's proof that there are infinitely many primes.

References

  • R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.

Crossrefs

Essentially the same as A084598.

Programs

  • Maple
    a :=n-> if n = 1 then 3 else numtheory:-divisors(mul(a(i),i = 1 .. n-1)-1)[2] fi:seq(a(n), n=1..15);
    # Robert FERREOL, Sep 25 2019
  • PARI
    lpf(n)=factor(n)[1,1] \\ better code exists, usually best to code in C and import
    print1(A=3); for(n=2,99, a=lpf(A); print1(", "a); A*=a) \\ Charles R Greathouse IV, Apr 07 2020

A051308 Euclid-Mullin sequence (A000945) with initial value a(1)=5 instead of a(1)=2.

Original entry on oeis.org

5, 2, 11, 3, 331, 19, 199, 53, 21888927391, 29833, 101, 71, 23, 311, 7, 72353, 13, 227, 96014559769, 5641, 41, 82107739003, 67, 169637539, 61, 29, 31319, 17, 97, 238591921, 313, 102065429, 157, 37, 595553520313, 244217, 241, 4773229353714971081083834237, 103
Offset: 1

Views

Author

Keywords

Comments

The initial primes 3 and 7 give essentially A000945.

Examples

			5*2*11*3 + 1 = 331, which is prime; the least prime factor of 330*331 + 1 = 109231 = 19*5749 is 19, so a(6) = 19.
		

Crossrefs

Programs

  • Mathematica
    a[1]=5; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1,1]);f;
    first(m)=my(v=vector(m));v[1]=5;for(i=2,m,v[i]=spf(1+prod(j=1,i-1,v[j])));v; \\ Anders Hellström, Aug 15 2015

Extensions

a(38)-a(39) from Robert Price, Jul 19 2015

A051335 Euclid-Mullin sequence (A000945) with initial value a(1)=127 instead of a(1)=2.

Original entry on oeis.org

127, 2, 3, 7, 5, 149, 19, 41, 23899, 139, 43, 761, 281, 17, 53, 2551, 23, 20149, 100720363856036298033578901613089271, 31, 179, 11, 13, 523, 282995646721, 2871347, 83, 10744429, 1031, 427773048135533, 97, 78506876242349, 67
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=127; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1,1]);f;
    first(m)={my(v=vector(m)); v[1]=127; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v;} /* Anders Hellström, Aug 18 2015 */

A057204 Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.

Original entry on oeis.org

7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014

Examples

			a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+3][[All,1]],Mod[#,6]==1 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    Q=1;for(n=1,11,f=factor(4*Q^2+3);for(i=1,#f~,p=f[i,1];if(p%6==1,break));print1(p", ");Q*=p) \\ Jens Kruse Andersen, Jun 30 2014

Extensions

More terms from Nick Hobson, Nov 14 2006
More terms from Sean A. Irvine, Oct 23 2014

A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Examples

			a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4+q^2][[All,1]],Mod[#,8]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k,1]; break);); print1(v[n], ", "););} \\ Michel Marcus, Oct 27 2014

Extensions

More terms from Sean A. Irvine, Oct 26 2014

A051334 Euclid-Mullin sequence (A000945) with initial value a(1)=8191 instead of a(1)=2.

Original entry on oeis.org

8191, 2, 3, 7, 53, 1399, 5, 19, 646843, 26945441, 109, 443, 90670999, 280460690293140589, 907, 16293787, 3655513, 499483, 131, 21067, 143797, 54540542259000816707816058313971443, 392963, 977, 11, 5021, 179, 439, 353, 34417238589462247, 1193114397863177, 13, 59, 31643, 79399, 73, 43, 16639867
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=8191; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a, 10]
  • PARI
    spf(n)=my(f=factor(n)[1,1]);f;
    first(m)={my(v=vector(m)); v[1]=8191; for(i=2, m, v[i]=spf(1+prod(j=1, i-1, v[j]))); v;} /* Anders Hellström, Aug 18 2015 */

Extensions

More terms from Sean A. Irvine, Sep 20 2012
a(30)-a(38) from Charles R Greathouse IV, Sep 21 2012

A051309 Euclid-Mullin sequence (A000945) with initial value a(1)=11 instead of a(1)=2.

Original entry on oeis.org

11, 2, 23, 3, 7, 10627, 433, 17, 13, 10805892983887, 73, 6397, 19, 489407, 2753, 87491, 18618443, 5, 31, 113, 41, 10723, 35101153, 25243, 374399, 966011, 293821591198219762366057, 234947, 4729, 27953, 3256171, 331, 613, 67, 272646324430637, 34281113, 21050393332691947013, 61, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=11; a[n_] := First[ Flatten[ FactorInteger[ 1+Product[ a[ j ], {j, 1, n-1} ] ] ] ]; Array[a,10]
  • PARI
    lpf(n)=factor(n)[1,1]
    first(m)=my(v=vector(m)); v[1]=11; for(i=2, m, v[i]=lpf(1+prod(j=1, i-1, v[j]))); v;
    \\ Anders Hellström, Aug 22 2015

Extensions

Corrected and extended by Sean A. Irvine, Apr 13 2008
Showing 1-10 of 43 results. Next