cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A057208 Primes of the form 8k+5 generated recursively: a(1)=5, a(n) = least prime p == 5 (mod 8) with p | 4+Q^2, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 1237, 32171803229, 829, 405565189, 14717, 39405395843265000967254638989319923697097319108505264560061, 282860648026692294583447078797184988636062145943222437, 53, 421, 13, 109, 4133, 6476791289161646286812333, 461, 34549, 453690033695798389561735541
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Examples

			a(3) = 1237 = 8*154 + 5 is the smallest suitable prime divisor of (5*29)*5*29 + 4 = 21029 = 17*1237. (Although 17 is the smallest prime divisor, 17 is not congruent to 5 modulo 8.)
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4+q^2][[All,1]],Mod[#,8]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)
  • PARI
    lista(nn) = {v = vector(nn); v[1] = 5; print1(v[1], ", "); for (n=2, nn, f = factor(4 + prod(k=1, n-1, v[k])^2); for (k=1, #f~, if (f[k, 1] % 8 == 5, v[n] = f[k,1]; break);); print1(v[n], ", "););} \\ Michel Marcus, Oct 27 2014

Extensions

More terms from Sean A. Irvine, Oct 26 2014

A132230 Primes congruent to 1 (mod 30).

Original entry on oeis.org

31, 61, 151, 181, 211, 241, 271, 331, 421, 541, 571, 601, 631, 661, 691, 751, 811, 991, 1021, 1051, 1171, 1201, 1231, 1291, 1321, 1381, 1471, 1531, 1621, 1741, 1801, 1831, 1861, 1951, 2011, 2131, 2161, 2221, 2251, 2281, 2311, 2341, 2371, 2521, 2551, 2671
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Also primes congruent to 1 (mod 15). - N. J. A. Sloane, Jul 11 2008
Primes ending in 1 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 04 2009

Examples

			From _Muniru A Asiru_, Nov 01 2017: (Start)
31 is a prime and 31 = 30*1 + 1;
61 is a prime and 61 = 30*2 + 1;
151 is a prime and 151 = 30*5 + 1;
211 is a prime and 211 = 30*7 + 1;
241 is a prime and 241 = 30*8 + 1;
271 is a prime and 271 = 30*9 + 1.
(End)
		

Crossrefs

Programs

Formula

a(n) = A111175(n)*30 + 1. - Ray Chandler, Apr 07 2009
Intersection of A030430 and A002476. - Ray Chandler, Apr 07 2009

Extensions

Edited by Ray Chandler, Apr 07 2009

A125045 Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041, 29, 24040758847310589568111822987, 154351, 89
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

The first five terms comprise the known Fermat primes: A019434.

Examples

			a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
		

Crossrefs

Programs

  • Mathematica
    a={3}; q=1;
    For[n=2,n<=20,n++,
        q=q*Last[a];
        AppendTo[a,Min[FactorInteger[q+2][[All,1]]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124984 Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

2+Q^2 always has a prime divisor congruent to 3 modulo 8.

Examples

			a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.

Crossrefs

Programs

  • Mathematica
    a = {3}; q = 1;
    For[n = 2, n ≤ 5, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#,
        8] \[Equal] 3 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)
  • PARI
    lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022

Extensions

a(10) from Robert Price, Jul 04 2015
a(11) from Robert Price, Jul 05 2015

A125037 Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q.

Original entry on oeis.org

53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26.

Examples

			a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={53}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a]; r=13*q;
        AppendTo[a,Min[Select[FactorInteger[(r^13-1)/(r-1)][[All,1]],Mod[#,26]==1 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

Extensions

More terms from Sean A. Irvine, Jun 24 2011

A124993 Primes of the form 22k+1 generated recursively. Initial prime is 23. General term is a(n) = Min {p is prime; p divides (R^11 - 1)/(R - 1); p == 1 (mod 11)}, where Q is the product of previous terms in the sequence and R = 11*Q.

Original entry on oeis.org

23, 4847239, 2971, 3936923, 9461, 1453, 331, 81373909, 89, 920771904664817214817542307, 353, 401743, 17088192002665532981, 11617
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^11 - 1)/(R - 1) different from 11 are congruent to 1 modulo 22.

Examples

			a(3) = 2971 is the smallest prime divisor congruent to 1 mod 22 of (R^11-1)/(R-1) =
7693953366218628230903493622259922359469805176129784863956847906415055607909988155588181877
= 2971 * 357405886421 * 914268562437006833738317047149 * 7925221522553970071463867283158786415606996703, where Q = 23 * 4847239, and R = 11*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={23}; q=1;
    For[n=2,n<=2,n++,
        q=q*Last[a]; r=11*q;
        AppendTo[a,Min[Select[FactorInteger[(r^11-1)/(r-1)][[All,1]],Mod[#,11]==1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

More terms from Max Alekseyev, May 29 2009

A057207 a(1)=5, a(n) is the smallest prime dividing 4*Q^2 + 1 where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 13, 8693, 1997, 6029, 61, 3181837, 113, 181, 1934689, 6143090225314378441493352126119201470973493456817556328833988172277, 4733, 3617, 41, 68141, 37, 51473, 17, 821, 598201519454797, 157, 9689, 2357, 757, 149, 293, 5261
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

Removed redundant mod(p,4) = 1 criterion from definition. By quadratic reciprocity, all factors of 1 + 4Q^2 are congruent to 1 (mod 4). See comments at the end of the b-file for an additional eight terms not proved, but nevertheless highly likely to be correct. - Daran Gill, Mar 23 2013

Examples

			a(4)=53 is the smallest prime divisor of 4*(5.101.1020101)^2+1 = 1061522231810040101 = 53*1613*12417062216309.
		

References

  • P. G. L. Dirichlet (1871): Vorlesungen über Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    t = {5}; Do[q = Times @@ t; AppendTo[t, FactorInteger[1 + 4*q^2][[1, 1]]], {6}]; t (* T. D. Noe, Mar 27 2013 *)

Extensions

Eight more terms, a(9)-a(16), from Max Alekseyev, Apr 27 2009
Seventeen more terms, a(17)-a(33), added by Daran Gill, Mar 23 2013

A132240 Primes congruent to {1, 29} mod 30.

Original entry on oeis.org

29, 31, 59, 61, 89, 149, 151, 179, 181, 211, 239, 241, 269, 271, 331, 359, 389, 419, 421, 449, 479, 509, 541, 569, 571, 599, 601, 631, 659, 661, 691, 719, 751, 809, 811, 839, 929, 991, 1019, 1021, 1049, 1051, 1109, 1171, 1201, 1229, 1231
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

For every prime p here, the cyclotomic polynomial Phi(15p,x) is flat.
Primes in A175887. [Reinhard Zumkeller, Jan 07 2012]

Crossrefs

Programs

  • Haskell
    a132240 n = a132240_list !! (n-1)
    a132240_list = [x | x <- a175887_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in {1, 29} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{1,29},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
    Select[Flatten[#+{1,29}&/@(30Range[0,50])],PrimeQ] (* Harvey P. Dale, Sep 08 2021 *)

A057206 Primes of the form 6k+5 generated recursively: a(1)=5; a(n) = min{p, prime; p mod 6 = 5; p | 6Q-1}, where Q is the product of all previous terms in the sequence.

Original entry on oeis.org

5, 29, 11, 1367, 13082189, 89, 59, 29819952677, 91736008068017, 17, 887050405736870123700827, 688273423680369013308306870159348033807942418302818522537, 74367405177105011, 12731422703, 1812053
Offset: 1

Views

Author

Labos Elemer, Oct 09 2000

Keywords

Comments

There are infinitely many primes of the form 6k + 5, and this sequence figures in the classic proof of that fact. - Alonso del Arte, Mar 02 2017

Examples

			a(3) = 11 is the smallest prime divisor of the form 6k + 5 of 6 * (5 * 29) - 1 = 6Q - 1 = 11 * 79 = 869.
		

References

  • Dirichlet, P. G. L. (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.

Crossrefs

Programs

  • Mathematica
    primes5mod6 = {5}; q = 1;For[n = 2, n <= 10, n++, q = q * Last[ primes5mod6]; AppendTo[primes5mod6, Min[Select[FactorInteger[6 * q - 1][[All, 1]], Mod[#, 6] == 5 &]]];]; primes5mod6 (* Robert Price, Jul 18 2015 *)
  • PARI
    main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%6==5&&(6*q-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* Anders Hellström, Jul 18 2015 */

Extensions

a(13)-a(17) from Robert Price, Jul 18 2015

A124988 Primes of the form 12k+7 generated recursively. Initial prime is 7. General term is a(n)=Min {p is prime; p divides 3+4Q^2; Mod[p,12]=7}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

7, 199, 7761799, 487, 67, 103, 1482549740515442455520791, 31, 139, 787, 19, 39266047, 1955959, 50650885759, 367, 185767, 62168707
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of 3+4Q^2 are congruent to 1 modulo 6.
At least one prime divisor of 3+4Q^2 is congruent to 3 modulo 4 and hence to 7 modulo 12.
The first six terms are the same as those of A057204.

Examples

			a(3) = 1482549740515442455520791 is the smallest prime divisor congruent to 7 mod 12 of 3+4Q^2 = 5281642303363312989311974746340327 = 3562539697 * 1482549740515442455520791, where Q = 7 * 199 * 7761799 * 487 * 67 * 103.
		

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+3][[All,1]],Mod[#,12]==7 &]]];
        ];
    a (* Robert Price, Jul 15 2015 *)
Showing 1-10 of 27 results. Next