cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A125045 Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041, 29, 24040758847310589568111822987, 154351, 89
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

The first five terms comprise the known Fermat primes: A019434.

Examples

			a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
		

Crossrefs

Programs

  • Mathematica
    a={3}; q=1;
    For[n=2,n<=20,n++,
        q=q*Last[a];
        AppendTo[a,Min[FactorInteger[q+2][[All,1]]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124984 Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

2+Q^2 always has a prime divisor congruent to 3 modulo 8.

Examples

			a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11.
		

References

  • D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.

Crossrefs

Programs

  • Mathematica
    a = {3}; q = 1;
    For[n = 2, n ≤ 5, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#,
        8] \[Equal] 3 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)
  • PARI
    lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022

Extensions

a(10) from Robert Price, Jul 04 2015
a(11) from Robert Price, Jul 05 2015

A125037 Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q.

Original entry on oeis.org

53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26.

Examples

			a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={53}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a]; r=13*q;
        AppendTo[a,Min[Select[FactorInteger[(r^13-1)/(r-1)][[All,1]],Mod[#,26]==1 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

Extensions

More terms from Sean A. Irvine, Jun 24 2011

A124988 Primes of the form 12k+7 generated recursively. Initial prime is 7. General term is a(n)=Min {p is prime; p divides 3+4Q^2; Mod[p,12]=7}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

7, 199, 7761799, 487, 67, 103, 1482549740515442455520791, 31, 139, 787, 19, 39266047, 1955959, 50650885759, 367, 185767, 62168707
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of 3+4Q^2 are congruent to 1 modulo 6.
At least one prime divisor of 3+4Q^2 is congruent to 3 modulo 4 and hence to 7 modulo 12.
The first six terms are the same as those of A057204.

Examples

			a(3) = 1482549740515442455520791 is the smallest prime divisor congruent to 7 mod 12 of 3+4Q^2 = 5281642303363312989311974746340327 = 3562539697 * 1482549740515442455520791, where Q = 7 * 199 * 7761799 * 487 * 67 * 103.
		

Crossrefs

Programs

  • Mathematica
    a={7}; q=1;
    For[n=2,n<=7,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+3][[All,1]],Mod[#,12]==7 &]]];
        ];
    a (* Robert Price, Jul 15 2015 *)

A124989 Primes of the form 10*k + 9 generated recursively. Initial prime is 19. General term is a(n) = Min_{p is prime; p divides 100*Q^2 - 5; p == 9 (mod 10)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

19, 7219, 462739, 509, 129229, 295380580489, 9653956849, 149, 110212292237172705230749846071050188009093377022084806290042881946231583507557298889, 157881589, 60397967745386189, 1429, 79
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

100Q^2-5 always has a prime divisor congruent to 9 modulo 10.

Examples

			a(3) = 462739 is the smallest prime divisor congruent to 9 mod 10 of 100Q^2-5 = 1881313992095 = 5 * 462739 * 813121, where Q = 19 * 7219.
		

Crossrefs

Programs

  • Mathematica
    a={19}; q=1;
    For[n=2,n<=6,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[100*q^2-5][[All,1]],Mod[#,10]==9&]]];
        ];
    a (* Robert Price, Jul 18 2015 *)

A124990 Primes of the form 12k+1 generated recursively. Initial prime is 13. General term is a(n)=Min {p is prime; p divides Q^4-Q^2+1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

13, 28393, 128758492789, 73, 193, 37, 457, 8363172060732903211423577787181
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of Q^4 - Q^2 + 1 are congruent to 1 modulo 12.

Examples

			a(3) = 128758492789 is the smallest prime divisor of Q^4 - Q^2 + 1 = 18561733755472408508281 = 128758492789 * 144159296629, where Q = 13 * 28393.
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, Second Edition (1990), p. 63.

Crossrefs

Programs

  • Mathematica
    a = {13}; q = 1;
    For[n = 2, n ≤ 8, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[q^4 - q^2 + 1][[All, 1]],
        Mod[#, 12] == 1 &]]];
        ];
    a  (* Robert Price, Jun 25 2015 *)

Extensions

a(8) from Robert Price, Jun 25 2015

A125039 Primes of the form 8k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^4 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 1336337, 4261668267710686591310687815697, 41, 4390937134822286389262585915435960722186022220433, 241, 1553, 243537789182873, 97, 27673, 4289, 457, 137201, 73, 337, 569891669978849, 617, 1697, 65089, 1609, 761
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.

Examples

			a(3) = 4261668267710686591310687815697 is the smallest prime divisor of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Extensions

More terms from Sean A. Irvine, Apr 09 2015

A124986 Primes of the form 12*k + 5 generated recursively. Initial prime is 5. General term is a(n) = Min_{p is prime; p divides 1 + 4*Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 433361, 401, 925177698346131180901394980203075088053316845914981, 44876921, 17, 173
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006 and Nov 23 2006

Keywords

Comments

All prime divisors of 1+4Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 1+4Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first seven terms are the same as those of A057207.
The next term is known but is too large to include.

Examples

			a(8) = 433361 is the smallest prime divisor congruent to 5 mod 12 of 1+4Q^2 = 3179238942812523869898723304484664524974766291591037769022962819805514576256901 = 13 * 433361 * 42408853 * 2272998442375593325550634821 * 5854291291251561948836681114631909089, where Q = 5 * 101 * 1020101 * 53 * 29 * 2507707213238852620996901 * 449.
		

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[4*q^2+1][[All,1]],Mod[#,12]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124987 Primes of the form 12k+5 generated recursively. Initial prime is 5. General term is a(n) = Min {p is prime; p divides 4+Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

5, 29, 17, 6076229, 1289, 78067083126343039013, 521, 8606045503613, 15837917, 1873731749, 809, 137, 2237, 17729
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

Since Q is odd, all prime divisors of 4+Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 4+Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first two terms are the same as those of A057208.

Examples

			a(3) = 17 is the smallest prime divisor congruent to 5 mod 12 of 4+Q^2 = 21029 = 17 * 1237, where Q = 5 * 29.
		

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[q^2+4][[All,1]],Mod[#,12]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)

A124991 Primes of the form 10k+1 generated recursively. Initial prime is 11. General term is a(n)=Min {p is prime; p divides (R^5 - 1)/(R - 1); Mod[p,5]=1}, where Q is the product of previous terms in the sequence and R = 5Q.

Original entry on oeis.org

11, 211, 1031, 22741, 41, 15487770335331184216023237599647357572461782407557681, 311, 61, 55172461, 3541, 1381, 2851, 19841, 151, 9033671, 456802301, 1720715817015281, 19001, 71
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (R^5 - 1)/(R - 1) different from 5 are congruent to 1 modulo 10.

Examples

			a(3) = 1031 is the smallest prime divisor congruent to 1 mod 10 of (R^5 - 1)/(R - 1) = 18139194759758381 = 1031 * 17593787351851, where Q = 11 * 211 and R = 5Q.
		

References

  • M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.

Crossrefs

Programs

  • Mathematica
    a={11}; q=1;
    For[n=2,n<=6,n++,
        q=q*Last[a]; r=5*q;
        AppendTo[a,Min[Select[FactorInteger[(r^5-1)/(r-1)][[All,1]],Mod[#,10]==1&]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(20)..a(34) in b-file from Max Alekseyev, Oct 23 2008
Showing 1-10 of 17 results. Next