cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005326 Permanent of "coprime?" matrix.

Original entry on oeis.org

1, 1, 3, 4, 28, 16, 256, 324, 3600, 3600, 129744, 63504, 3521232, 3459600, 60891840, 91240704, 8048712960, 3554067456, 425476094976, 320265446400, 12474417291264, 16417666704384, 2778580249611264, 1142807773593600, 172593628397420544
Offset: 1

Views

Author

Keywords

Comments

Number of permutations p of (1,2,3,...,n) such that k and p(k) are relatively prime for all k in (1,2,3,...,n). - Benoit Cloitre, Aug 23 2002
Coprime matrix M=[m(i,j)] is a square matrix defined by m(i,j)=1 if gcd(i,j)=1 else 0.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A009679.

Programs

  • Maple
    Jackson2:=proc(n) local m,i,j,M,p,b,s,x;
    if 0=(n mod 2) then;
    m := n/2;
    M := Matrix(m, m, 0);
      for i from 1 to m do for j from 1 to m do;
        if 1= igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od;
    s := LinearAlgebra[Permanent](M);
    return s^2;
    else;
    m := (n + 1)/2;
    M := Matrix(m, m, 0);
        for i from 1 to m-1 do for j from 1 to m do;
          if 1=igcd(2*i,2*j-1) then M[i,j]:=1; fi; od; od;
    for j to m do
        M[m,j] := x[j];
    end do;
    p := LinearAlgebra[Permanent](M);
    b := [ ];
    for j to m do
        b := [op(b), coeff(p, x[j])];
    end do;
    s := 0;
      for i from 1 to m do for j from 1 to m do;
        if 1=igcd(2*i-1,2*j-1) then s:=s+b[i]*b[j]; fi; od; od; fi;
    return s;
    end;
    seq(Jackson2(n), n=1..25); # Stephen C. Locke, Feb 24 2022
  • Mathematica
    perm[m_?MatrixQ] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; a[n_] := perm[ Table[ Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Nov 15 2011 *)
    (* or, if version >= 10: *)
    a[n_] := Permanent[Table[Boole[GCD[i, j] == 1], {i, 1, n}, {j, 1, n}]]; Table[an = a[n]; Print[an]; an, {n, 1, 24}] (* Jean-François Alcover, Jul 25 2017 *)
  • PARI
    permRWNb(a)=n=matsize(a)[1]; if(n==1,return(a[1,1])); sg=1; nc=0; in=vectorv(n); x=in; x=a[,n]-sum(j=1,n,a[,j])/2; p=prod(i=1,n,x[i]); for(k=1,2^(n-1)-1,sg=-sg; j=valuation(k,2)+1; z=1-2*in[j]; in[j]+=z; nc+=z; x+=z*a[,j]; p+=prod(i=1,n,x[i],sg)); return(2*(2*(n%2)-1)*p)
    for(n=1,26,a=matrix(n,n,i,j,gcd(i,j)==1); print1(permRWNb(a)",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 13 2007

Formula

a(2n) = A009679(n)^2. - T. D. Noe, Feb 10 2007

Extensions

Corrected by Vladeta Jovovic, Jul 05 2003
More terms from T. D. Noe, Feb 10 2007
a(25) from Alois P. Heinz, Nov 15 2016