A005356 Number of low discrepancy sequences in base 2.
0, 0, 1, 3, 5, 8, 11, 14, 18, 22, 26, 30, 34, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 198, 205, 212, 219, 226, 233, 240, 247, 254, 261, 268, 275, 282, 289, 296
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Harald Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), no. 1, 51-70.
Programs
-
Maple
N := proc(b,n) option remember; local d; add(b^d*numtheory[mobius](n/d),d=numtheory[divisors](n)) ; %/n ; end proc: M := proc(b,n) local h; if n = 0 then 0; else add(N(b,h),h=1..n) ; end if; end proc: nMax := proc(b,s) local n; for n from 0 do if M(b,n) > s then return n-1 ; end if; end do: end proc: A005356 := proc(s) local n,b; b := 2 ; n := nMax(b,s) ; n*(s-M(b,n))+add( (h-1)*N(b,h),h=1..n) ; end proc: seq(A005356(n),n=1..40) ; # R. J. Mathar, Jun 09 2016
-
Mathematica
Np[b_, n_] := Np[b, n] = Sum[b^d*MoebiusMu[n/d], {d, Divisors[n]}]/n; M[b_, n_] := If[n == 0, 0, Sum[Np[b, h], {h, 1, n}]]; nMax[b_, s_] := Module[{n}, For[n = 0, True, n++, If[M[b, n] > s, Return[n - 1]]]]; a[s_] := Module[{n, b}, b = 2; n = nMax[b, s]; n*(s - M[b, n]) + Sum[(h - 1)*Np[b, h], {h, 1, n}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 09 2023, after R. J. Mathar *)
Extensions
More terms from Sean A. Irvine, May 27 2016
Comments