A005386 Area of n-th triple of squares around a triangle.
1, 3, 16, 75, 361, 1728, 8281, 39675, 190096, 910803, 4363921, 20908800, 100180081, 479991603, 2299777936, 11018898075, 52794712441, 252954664128, 1211978608201, 5806938376875, 27822713276176, 133306628004003, 638710426743841, 3060245505715200
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- J. Meeus, Letter to N. J. A. Sloane with attachment, Mar 1975
- J. C. G. Nottrot, Vierkantenkransen rond een driehoek, Pythagoras (Netherlands), 14 (1975-1976) 77-81.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,4,-1).
Programs
-
Magma
I:=[1, 3, 16]; [n le 3 select I[n] else 4*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..41]]; // G. C. Greubel, Nov 16 2022
-
Maple
A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.] a:= n-> (Matrix([[0,1,3]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,4,-1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=1..25); # Alois P. Heinz, Aug 05 2008
-
Mathematica
a[n_]:= Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt[3]*n1+n2, n1}, {n-1}];n1^2]; Table[a[n], {n,30}] a[n_]:= Round[((5+Sqrt[21])/2)^n/7]; Table[a[n], {n, 30}] Rest@(CoefficientList[Series[x/(1-x*(Sqrt[3]+x)), {x, 0, 30}], x])^2 Abs[ChebyshevU[Range[1,40]-1, I*Sqrt[3]/2]]^2 (* G. C. Greubel, Nov 16 2022 *)
-
SageMath
def A005386(n): return abs(chebyshev_U(n-1, i*sqrt(3)/2))^2 [A005386(n) for n in range(1,40)] # G. C. Greubel, Nov 16 2022
Formula
G.f.: x*(1-x)/((1+x)*(1-5*x+x^2)).
a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3), a(1)=1, a(2)=3, a(3)=16.
a(n) = (2/7)*(T(n, 5/2) - (-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - Wolfdieter Lang, Oct 18 2004
From Peter Bala, Apr 03 2014: (Start)
a(n) = |U(n-1, sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
Extensions
Edited by Peter J. C. Moses, Apr 23 2004
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004
Comments