A005412 Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
1, 3, 18, 153, 1638, 20898, 307908, 5134293, 95518278, 1961333838, 44069970348, 1075902476058, 28367410077468, 803551902237828, 24342558819042888, 785445178323709773, 26896354975287884358, 974297972094661642518, 37225733779871789177628, 1496237868417003741147438
Offset: 1
Examples
x + 3*x^2 + 18*x^3 + 153*x^4 + 1638*x^5 + 20898*x^6 + 307908*x^7 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..250
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, (1978), 1939-1949. DOI:10.1103/PhysRevD.18.1939
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 293.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Wikipedia, Feynman diagram
Programs
-
Haskell
a005412 n = a005412_list !! (n-1) a005412_list = 1 : f 2 [1] where f v ws@(w:_) = y : f (v + 2) (y : ws) where y = v * w + (sum $ zipWith (*) ws $ reverse ws) -- Reinhard Zumkeller, Jan 24 2014
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+2*y)/y, 1) + b(x-1, y+1, true) )) end: a:= n-> b(2*n-2, 0, false): seq(a(n), n=1..25); # Alois P. Heinz, May 23 2015
-
Mathematica
a[n_]:=SeriesCoefficient[1 - (2*x)/(1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))]),{x,0,n}] (* Robert Coquereaux, Sep 12 2014 *) Clear[a]; a[1] = 1; a[n_]:= a[n] = (2*n-2)*a[n-1] + Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
PARI
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
Formula
See recurrence in Martin-Kearney paper.
From Peter Bala, Mar 07 2011: (Start)
The o.g.f. A(x) = x^2 + 3*x^4 + 18*x^6 + 153*x^8 + ... satisfies the differential equation A(x) = x^2 + x^3*A'(x) + A(x)^2 (equation 3.55, P. Cvitanovic et al., A'(x) the derivative of A(x)).
Conjectural o.g.f. as a continued fraction:
x^2/(1-3*x^2/(1-3*x^2/(1-5*x^2/(1-5*x^2/(1-7*x^2/(1-7*x^2/(1-...))))))).
[follows by applying the result of Stokes to the g.f. G(x) := (1/x)*A(sqrt(x)), which satisfies the Riccati differential equation 2*x^2*G'(x) + 1 + (2*x - 1)*G(x) + x*G^2(x) = 0 - added by Peter Bala, Jun 22 2022]. (End).
a(n) = (2*n - 2) * a(n-1) + Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
G.f.: 1/x - Q(0)/x, where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+3)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
G.f.: 1/x - 2 - Q(0)/x, where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
G.f.: 1/x + 1/( Q(0)-1 ), where Q(k) = 1 - (2*k+1)*x/(1 - (2*k+1)*x/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 18 2013
G.f.: 1/x - Q(0)/x, where Q(k) = 1 + x*(2*k+2) - (2*k+3)*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013
From the relation with A005411, one finds the g.f.: 1 - (2*x)/(1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))]). - Robert Coquereaux, Sep 12 2014
This satisfies the d.e. 2*x^2*g'(x) - g(x) + g(x)^2 = -x, which can be obtained from the d.e. for A(x) by A(sqrt(x)) = g(x). - Robert Israel, Sep 12 2014
a(n) ~ 2^(n+1) * n! / Pi. - Vaclav Kotesovec, Jan 19 2015
Extensions
Name corrected by Charles R Greathouse IV, Jan 24 2014
Name clarified by Robert Coquereaux, Sep 12 2014
Comments