A005444 From a Fibonacci-like differential equation.
1, 1, 3, 8, 50, 214, 2086, 11976, 162816, 1143576, 20472504, 165910128, 3785092032, 33908109936, 967508478192, 9252123203712, 327062428940160, 3236057604910080, 141403289873955840, 1404243298160352000, 76168955916831029760, 735206146073008508160
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Georg Fischer, Table of n, a(n) for n = 0..100
- P. R. J. Asveld & N. J. A. Sloane, Correspondence, 1987
- P. R. J. Asveld, Fibonacci-like differential equations with a polynomial nonhomogeneous term, Fib. Quart. 27 (1989), 303-309.
Programs
-
Magma
[(&+[Factorial(j)*Fibonacci(j+1)*StirlingFirst(n,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 21 2022
-
Mathematica
CoefficientList[Series[1/(1-Log[1+x]-(Log[1+x])^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
-
PARI
a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 1)); \\ Michel Marcus, Oct 30 2015
-
SageMath
def A005444(n): return sum((-1)^(n+k)*factorial(k)*fibonacci(k+1)* stirling_number1(n,k) for k in (0..n)) [A005444(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
Formula
a(n) = Sum_{k=0..n} k!*Fibonacci(k+1)*Stirling1(n, k).
E.g.f.: 1/(1 - log(1+x) - log(1+x)^2). - Vladeta Jovovic, Sep 29 2003
a(n) ~ n! * (-1)^n * exp(n*(1+sqrt(5))/2) / (sqrt(5)*(exp((1+sqrt(5))/2)-1)^(n+1)). - Vaclav Kotesovec, Oct 01 2013
Comments