cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005451 a(n) = 1 if n is a prime number, otherwise a(n) = n.

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 14, 15, 16, 1, 18, 1, 20, 21, 22, 1, 24, 25, 26, 27, 28, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 49, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60
Offset: 1

Views

Author

Keywords

Comments

Denominator of (1 + Gamma(n))/n.
Möbius transform of A380441(n). - Wesley Ivan Hurt, Jun 21 2025

References

  • Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.

Crossrefs

Cf. A005171, A005450 (numerators).

Programs

  • Magma
    [IsPrime(n) select 1 else n: n in [1..70]]; // Vincenzo Librandi, Feb 22 2013
    
  • Magma
    [Denominator((1 + Factorial(n-1))/n): n in [1..70]]; // G. C. Greubel, Nov 22 2022
    
  • Maple
    seq(denom((1 + (n-1)!)/n), n=1..80); # G. C. Greubel, Nov 22 2022
  • Mathematica
    Table[If[PrimeQ[n], 1, n], {n, 70}] (* Vincenzo Librandi, Feb 22 2013 *)
    a[n_] := ((n-1)! + 1)/n - Floor[(n-1)!/n] // Denominator; Table[a[n] , {n, 70}] (* Jean-François Alcover, Jul 17 2013, after Minac's formula *)
    Table[Denominator[(1 + Gamma[n])/n], {n,2,70}] (* G. C. Greubel, Nov 22 2022 *)
  • Sage
    def A005451(n):
        if n == 4: return n
        f = factorial(n-1)
        return 1/((f + 1)/n - f//n)
    [A005451(n) for n in (1..71)]   # Peter Luschny, Oct 16 2013
    
  • SageMath
    [denominator((1+gamma(n))/n) for n in range(1,71)] # G. C. Greubel, Nov 22 2022

Formula

Define b(n) = ( (n-1)*(n^2-3*n+1)*b(n-1) - (n-2)^3*b(n-2) )/(n*(n-3)); b(2) = b(3) = 1; a(n) = denominator(b(n)).
a(n) = A088140(n), n >= 3. - R. J. Mathar, Oct 28 2008
a(n) = gcd(n, (n!*n!!)/n^2). - Lechoslaw Ratajczak, Mar 09 2019
From Wesley Ivan Hurt, Jun 21 2025: (Start)
a(n) = n^c(n), where c = A005171.
a(n) = Sum_{d|n} A380441(d) * mu(n/d). (End)

Extensions

Name edited and a(1)=1 prepended by G. C. Greubel, Nov 22 2022. Name further edited by N. J. A. Sloane, Nov 22 2022