cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005471 Primes of the form m^2 + 3m + 9, where m can be positive or negative.

Original entry on oeis.org

7, 13, 19, 37, 79, 97, 139, 163, 313, 349, 607, 709, 877, 937, 1063, 1129, 1489, 1567, 1987, 2557, 2659, 3313, 3547, 4297, 5119, 5557, 7489, 8017, 8563, 9127, 9319, 9907, 10513, 11779, 12889, 15013, 15259, 16519, 17299, 18097, 18367, 18913, 20029
Offset: 1

Views

Author

Keywords

Comments

Primes of the form m^2 + m + 7, for some m >= 0. - Daniel Forgues, Jan 26 2020
Primes p such that 4*p - 27 is a square. Also, primes p such that the Galois group of the polynomial X^3 - p*X + p over Q is the cyclic group of order 3. See Conrad, Corollary 2.5. - Peter Bala, Oct 17 2021
From Peter Bala, Nov 18 2021: (Start)
Primes p such that the Galois group of the cubic X^3 + p*(X + 1)^2 over Q is the cyclic group C_3.
If p = m^2 + 3*m + 9 is prime then the Galois group of the cubic X^3 - m*X^2 - (m + 3)*X - 1 over Q is C_3. See Shanks.
The pair of cubics X^3 - m*p*X^2 - 3*(m+1)*p*X - (2*m+3)*p and X^3 - 2*p*X^2 + p*(p - 10)*X + p*(p - 8) also have their Galois groups over Q equal to C_3 (both cubics are irreducible over Q by Eisenstein's criteria). Apply Conrad, Corollary 2.5. (End)

Examples

			For m = -11, -10, ..., 22 the primes of the form m^2+3m+9 are 97, 79, 37, 19, 13, 7, 7, 13, 19, 37, 79, 97, 139, 163, 313, 349.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Primes in A027692.

Programs

  • Magma
    [a: n in [-1..150] | IsPrime(a) where a is  n^2+3*n+9]; // Vincenzo Librandi, Mar 22 2013
  • Maple
    A005471 := proc(n)
        if n = 1 then
            7;
        else
            A175282(n-1)*(3+A175282(n-1))+9 ;
        end if;
    end proc: # R. J. Mathar, Jun 06 2019
  • Mathematica
    Select[Table[n^2 + 3*n + 9, {n, -1, 200}], PrimeQ] (* T. D. Noe, Mar 21 2013 *)

Formula

a(n) == 1 (mod 6). - Zak Seidov, Mar 20 2010
a(n+1) = A175282(n)^2 + 3*A175282(n) + 9. - R. J. Mathar, Jun 06 2019