A005471 Primes of the form m^2 + 3m + 9, where m can be positive or negative.
7, 13, 19, 37, 79, 97, 139, 163, 313, 349, 607, 709, 877, 937, 1063, 1129, 1489, 1567, 1987, 2557, 2659, 3313, 3547, 4297, 5119, 5557, 7489, 8017, 8563, 9127, 9319, 9907, 10513, 11779, 12889, 15013, 15259, 16519, 17299, 18097, 18367, 18913, 20029
Offset: 1
Examples
For m = -11, -10, ..., 22 the primes of the form m^2+3m+9 are 97, 79, 37, 19, 13, 7, 7, 13, 19, 37, 79, 97, 139, 163, 313, 349.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. Barbero, U. Cerruti, and N. Murru, Identities Involving Zeros of Ramanujan and Shanks Cubic Polynomials, J. Integer Seq., Vol. 16 (2013), Article 13.8.1.
- Keith Conrad, Galois groups of cubics and quartics (not in characteristic 2)
- Hyun Kwang Kim and Jung Soo Kim, Evaluation of zeta function of the simplest cubic field at negative odd integers, Math. Comp. 71 (2002), no. 239, 1243-1262.
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
- Koji Uchida, Class numbers of cubic cyclic fields, J. Math. Soc. Japan, Vol. 26, No. 3, 1974, pp. 447 - 453.
Programs
-
Magma
[a: n in [-1..150] | IsPrime(a) where a is n^2+3*n+9]; // Vincenzo Librandi, Mar 22 2013
-
Maple
A005471 := proc(n) if n = 1 then 7; else A175282(n-1)*(3+A175282(n-1))+9 ; end if; end proc: # R. J. Mathar, Jun 06 2019
-
Mathematica
Select[Table[n^2 + 3*n + 9, {n, -1, 200}], PrimeQ] (* T. D. Noe, Mar 21 2013 *)
Formula
a(n) == 1 (mod 6). - Zak Seidov, Mar 20 2010
Comments