cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005491 a(n) = n^3 + 3*n + 1.

Original entry on oeis.org

1, 5, 15, 37, 77, 141, 235, 365, 537, 757, 1031, 1365, 1765, 2237, 2787, 3421, 4145, 4965, 5887, 6917, 8061, 9325, 10715, 12237, 13897, 15701, 17655, 19765, 22037, 24477, 27091, 29885, 32865, 36037, 39407, 42981, 46765, 50765, 54987, 59437, 64121, 69045
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^3+3*n+1: n in [0..50]]; // G. C. Greubel, Dec 01 2022
    
  • Maple
    A005491:=(1+z+z**2+3*z**3)/(z-1)**4; # [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Table[n^3 + 3 n + 1, {n, 0, 50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,5,15,37},50] (* Harvey P. Dale, Oct 01 2014 *)
  • PARI
    a(n)=n^3+3*n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [(n+1)^3 -3*n^2 for n in range(51)] # G. C. Greubel, Dec 01 2022

Formula

a(0)=1, a(1)=5, a(2)=15, a(3)=37, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Oct 01 2014
From G. C. Greubel, Dec 01 2022: (Start)
E.g.f.: (1 + 4*x + 3*x^2 + x^3)*exp(x).
a(n) = A000578(n) + A016777(n) = A001093(n) + A008585(n). (End)

Extensions

More terms from Harvey P. Dale, Oct 01 2014