cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A108087 Array, read by antidiagonals, where A(n,k) = exp(-1)*Sum_{i>=0} (i+k)^n/i!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 4, 1, 52, 52, 37, 17, 5, 1, 203, 203, 151, 77, 26, 6, 1, 877, 877, 674, 372, 141, 37, 7, 1, 4140, 4140, 3263, 1915, 799, 235, 50, 8, 1, 21147, 21147, 17007, 10481, 4736, 1540, 365, 65, 9, 1, 115975, 115975, 94828, 60814, 29371, 10427, 2727, 537, 82, 10, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

The column for k=0 is A000110 (Bell or exponential numbers). The column for k=1 is A000110 starting at offset 1. The column for k=2 is A005493 (Sum_{k=0..n} k*Stirling2(n,k).). The column for k=3 is A005494 (E.g.f.: exp(3*z+exp(z)-1).). The column for k=4 is A045379 (E.g.f.: exp(4*z+exp(z)-1).). The row for n=0 is 1's sequence, the row for n=1 is the natural numbers. The row for n=2 is A002522 (n^2 + 1.). The row for n=3 is A005491 (n^3 + 3n + 1.). The row for n=4 is A005492.
Number of ways of placing n labeled balls into n+k boxes, where k of the boxes are labeled and the rest are indistinguishable. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
The column for k = -1 (not shown) is A000296 (Number of partitions of an n-set into blocks of size >1. Also number of cyclically spaced (or feasible) partitions.). - Gerald McGarvey, Oct 08 2006
Equals antidiagonals of an array in which (n+1)-th column is the binomial transform of n-th column, with leftmost column = the Bell sequence, A000110. - Gary W. Adamson, Apr 16 2009
Number of partitions of [n+k] where at least k blocks contain their own index element. A(2,2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022

Examples

			Array A(n,k) begins:
   1,   1,   1,    1,    1,     1,     1,     1,     1,      1, ... A000012;
   1,   2,   3,    4,    5,     6,     7,     8,     9,     10, ... A000027;
   2,   5,  10,   17,   26,    37,    50,    65,    82,    101, ... A002522;
   5,  15,  37,   77,  141,   235,   365,   537,   757,   1031, ... A005491;
  15,  52, 151,  372,  799,  1540,  2727,  4516,  7087,  10644, ... A005492;
  52, 203, 674, 1915, 4736, 10427, 20878, 38699, 67340, 111211, ... ;
Antidiagonal triangle, T(n, k), begins as:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    3,    1;
    15,   15,   10,    4,   1;
    52,   52,   37,   17,   5,   1;
   203,  203,  151,   77,  26,   6,  1;
   877,  877,  674,  372, 141,  37,  7,  1;
  4140, 4140, 3263, 1915, 799, 235, 50,  8,  1;
		

References

  • F. Ruskey, Combinatorial Generation, preprint, 2001.

Crossrefs

Main diagonal gives A134980.
Antidiagonal sums give A347420.

Programs

  • Magma
    A108087:= func< n,k | (&+[Binomial(n-k,j)*k^j*Bell(n-k-j): j in [0..n-k]]) >;
    [A108087(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 02 2022
    
  • Maple
    with(combinat):
    A:= (n, k)-> add(binomial(n, i) * k^i * bell(n-i), i=0..n):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := Sum[Binomial[n, i] * k^i * BellB[n - i], {i, 0, n}]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    f(n,k)=round (suminf(i=0,(i+k)^n/i!)/exp(1));
    g(n,k)=for(k=0,k,print1(f(n,k),",")) \\ prints k+1 terms of n-th row
    
  • SageMath
    def A108087(n,k): return sum( k^j*bell_number(n-k-j)*binomial(n-k,j) for j in range(n-k+1))
    flatten([[A108087(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

For n> 1, A(n, k) = k^n + sum_{i=0..n-2} A086659(n, i)*k^i. (A086659 is set partitions of n containing k-1 blocks of length 1, with e.g.f: exp(x*y)*(exp(exp(x)-1-x)-1).)
A(n, k) = k * A(n-1, k) + A(n-1, k+1), A(0, k) = 1. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
A(n,k) = Sum_{i=0..n} C(n,i) * k^i * Bell(n-i). - Alois P. Heinz, Jul 18 2012
Sum_{k=0..n-1} A(n-k,k) = A005490(n). - Alois P. Heinz, Jan 05 2022
From G. C. Greubel, Dec 02 2022: (Start)
T(n, n) = A000012(n).
T(n, n-1) = A000027(n).
T(n, n-2) = A002522(n-1).
T(n, n-3) = A005491(n-2).
T(n, n-4) = A005492(n+1).
T(2*n, n) = A134980(n).
T(2*n, n+1) = A124824(n), n >= 1.
Sum_{k=0..n} T(n, k) = A347420(n). (End)

A271025 A(n, k) is the n-th binomial transform of the Catalan sequence (A000108) evaluated at k. Array read by descending antidiagonals for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 15, 10, 4, 1, 42, 51, 37, 17, 5, 1, 132, 188, 150, 77, 26, 6, 1, 429, 731, 654, 371, 141, 37, 7, 1, 1430, 2950, 3012, 1890, 798, 235, 50, 8, 1, 4862, 12235, 14445, 10095, 4706, 1539, 365, 65, 9, 1, 16796, 51822, 71398, 56040, 28820, 10392, 2726, 537, 82, 10, 1
Offset: 0

Views

Author

John M. Campbell, Mar 28 2016

Keywords

Comments

Interestingly, the determinant of the n X n array of entries of the form A(i,j) is equal to the (n-1)-th superfactorial number (see A000178).
As indicated in A104455, the k-th binomial transform of A000108 will have:
o.g.f.: (1-sqrt((1-(k+4)*x)/(1-k*x)))/(2*x),
e.g.f.: exp((k+2)*x)*(BesselI(0,2x) - BesselI(1,2x)) and
a(n) = Sum_{i=0..n} binomial(n, i)*CatalanNumber(i)*k^(n-i).
The columns of this array are polynomial integer sequences. The successive polynomials corresponding to the columns of this array are: p0(n) = 1, p1(n) = n + 1, p2(n) = n^2 + 2n + 2, p3(n) = n^3 + 3*n^2 + 6*n + 5, p4(n) = n^4 + 4*n^3 + 12*n^2 + 20*n + 14, and so forth. The coefficients of these successive polynomials form a number triangle, which is given by A098474.

Examples

			The array given by integers of the form A(n,k) is illustrated below:
[0] 1, 1,  2,   5,    14,    42,     132,     429,      1430, ...
[1] 1, 2,  5,   15,   51,    188,    731,     2950,     12235, ...
[2] 1, 3,  10,  37,   150,   654,    3012,    14445,    71398, ...
[3] 1, 4,  17,  77,   371,   1890,   10095,   56040,    320795, ...
[4] 1, 5,  26,  141,  798,   4706,   28820,   182461,   1188406, ...
[5] 1, 6,  37,  235,  1539,  10392,  72267,   516474,   3783115, ...
[6] 1, 7,  50,  365,  2726,  20838,  162996,  1303485,  10642310, ...
[7] 1, 8,  65,  537,  4515,  38654,  337007,  2991340,  27013723, ...
[8] 1, 9,  82,  757,  7086,  67290,  648420,  6340365,  62893270, ...
[9] 1, 10, 101, 1031, 10643, 111156, 1174875, 12568686, 136080971, ...
Seen as a triangle:
                          1
                         1, 1
                       2, 2, 1
                      5, 5, 3, 1
                   14, 15, 10, 4, 1
                 42, 51, 37, 17, 5, 1
             132, 188, 150, 77, 26, 6, 1
          429, 731, 654, 371, 141, 37, 7, 1
      1430, 2950, 3012, 1890, 798, 235, 50, 8, 1
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> (2/Pi)*int((k+4*x^2)^(n-k)*sqrt(1 - x^2), x=-1..1):
    for n from 0 to 9 do seq(A(n,k), k=0..n) od; # Peter Luschny, Jan 27 2020
  • Mathematica
    A000108[n_]:= Binomial[2*n,n]/(n+1) ;
    T[i_,j_]: Sum[Binomial(j,k)*A000108(k)*i^(j-k), {k,0,j}] ;
    A[0, k_] := CatalanNumber[k]; A[n_, k_] := n^k*Hypergeometric2F1[1/2, -k, 2, -4/n];
    Table[A[n, k], {n, 0, 6}, {k, 0, 8}] (* Peter Luschny, Jan 27 2020 *)
  • Sage
    def A000108(n): return binomial(2*n,n)/(n+1) ;
    def T(i,j): return sum(binomial(j,k)*A000108(k)*i^(j-k) for k in range(j+1))

Formula

A(0,j) = A000108(j).
A(i,j) = Sum_{k=0..j} binomial(j,k)*A(i-1,k) for i >= 1.
A(i,j) = Sum_{k=0..j} binomial(j,k)*A000108(k)*i^(j-k).
From Peter Luschny, Jan 27 2020: (Start)
A(n,k) = n^k*hypergeom([1/2, -k], [2], -4/n) for n >= 1.
A(n,k) = (2/Pi)*Integral_{x=-1..1}(k + 4*x^2)^(n - k)*sqrt(1 - x^2). (End)

A197773 Ceiling((n+1/n)^3).

Original entry on oeis.org

8, 16, 38, 77, 141, 235, 365, 537, 757, 1031, 1365, 1765, 2237, 2787, 3421, 4145, 4965, 5887, 6917, 8061, 9325, 10715, 12237, 13897, 15701, 17655, 19765, 22037, 24477, 27091, 29885, 32865, 36037, 39407, 42981, 46765, 50765, 54987, 59437, 64121, 69045, 74215
Offset: 1

Views

Author

Vincenzo Librandi, Oct 19 2011

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling((n+1/n)^3): n in [1..60]]

A375577 Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
Offset: 0

Views

Author

Stefano Spezia, Aug 19 2024

Keywords

Examples

			Array begins:
  2, 2,  2,   2,    2,     2, ...
  1, 3,  5,   7,    9,    11, ...
  1, 4,  9,  16,   25,    36, ...
  1, 5, 15,  37,   77,   141, ...
  1, 6, 25,  94,  273,   646, ...
  1, 7, 43, 259, 1045,  3151, ...
  1, 8, 77, 748, 4121, 15656, ...
  ...
		

Crossrefs

Cf. A000290, A004247, A004248, A005408 (n=1), A005491 (n=3), A007395 (n=0), A054977 (k=0), A176691 (k=2), A176805 (k=3), A176916 (k=5), A176972 (k=7), A214647.
Cf. A375578 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=2; A[n_,k_]:=k^n+k*n+1;Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f. for the k-th column: (2*x^2 - 3*x - k^2 + k + 1)/((x - 1)^2*(x - k)).
E.g.f. for the k-th column: exp(x)*(1 + exp((k-1)*x) + k*x).
A(n,1) = n + 2.
A(2,n) = A000290(n+1).
A(n,n) = 2*A214647(n) + 1.

A180275 Primes of the form n^3+3*n+1.

Original entry on oeis.org

5, 37, 757, 1031, 2237, 6917, 22037, 27091, 36037, 117797, 157627, 166541, 262337, 422101, 474787, 493277, 729271, 1643387, 1728361, 1906997, 2147077, 2460781, 2628487, 2686037, 3242237, 3375451, 4020157, 4742137, 5268547, 5359901
Offset: 1

Views

Author

Graziano Aglietti (mg5055(AT)mclink.it), Aug 23 2010

Keywords

Comments

Primes in A005491.

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is (n^3+3*n+1)] // Vincenzo Librandi, Jan 30 2011

Extensions

Definition corrected, incorrect program deleted - R. J. Mathar, Aug 25 2010
Showing 1-5 of 5 results.