A005514 Number of n-bead bracelets (turnover necklaces) with 8 red beads and n-8 black beads.
1, 1, 5, 10, 29, 57, 126, 232, 440, 750, 1282, 2052, 3260, 4950, 7440, 10824, 15581, 21879, 30415, 41470, 56021, 74503, 98254, 127920, 165288, 211276, 268228, 337416, 421856, 523260, 645456, 790704, 963793, 1167645, 1408185
Offset: 8
Examples
From _Petros Hadjicostas_, Jul 14 2018: (Start) Every n-bead bracelet of two colors such that 8 beads are red and n-8 are black can be transformed into a dihedral composition of n with 8 parts in the following way. Start with one R bead and go in one direction (say clockwise) until you reach the next R bead. Continue this process until you come back to the original R bead. Let b_i be the number of beads from R bead i until you reach the last B bead before R bead i+1 (or R bead 1). Here, b_i = 1 iff there are no B beads between R bead i and R bead i+1 (or R bead 8 and R bead 1). Then b_1 + b_2 + ... + b_8 = n, and we get a dihedral composition of n. (Of course, b_2 + b_3 + ... + b_8 + b_1 and b_8 + b_7 + ... + b_1 belong to the same equivalence class of the dihedral composition b_1 + ... + b_8.) For example, a(10) = 5, and we have the following bracelets with 8 R beads and 2 B beads. Next to the bracelets we list the corresponding dihedral compositions of n with k=8 parts (they must be viewed on a circle): RRRRRRRRBB <-> 1+1+1+1+1+1+1+3 RRRRRRRBRB <-> 1+1+1+1+1+1+2+2 RRRRRRBRRB <-> 1+1+1+1+1+2+1+2 RRRRRBRRRB <-> 1+1+1+1+2+1+1+2 RRRRBRRRRB <-> 1+1+1+2+1+1+1+2 (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 8..1000
- Christian G. Bower, Transforms (2)
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, Polygonal systems including the corannulene and coronene homologs: novel applications of Pólya's theorem, Z. Naturforsch., 52a (1997), 867-873.
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.
- W. D. Hoskins and Anne Penfold Street, Twills on a given number of harnesses, J. Austral. Math. Soc. Ser. A 33 (1982), no. 1, 1-15.
- W. D. Hoskins and A. P. Street, Twills on a given number of harnesses, J. Austral. Math. Soc. (Series A), 33 (1982), 1-15. (Annotated scanned copy)
- Richard H. Reis, A formula for C(T) in Gupta's paper, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 1000-1001.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma), arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
- A. P. Street, Letter to N. J. A. Sloane, N.D.
- Index entries for sequences related to bracelets
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,11,-8,0,8,-10,0,8,0,-10,8,0,-8,11,-4,-4,4,-1).
Crossrefs
Programs
-
Mathematica
k = 8; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *) k=8;CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
Formula
S. J. Cyvin et al. (1997) give a g.f. (See equation (18) on p. 870 of their paper. Their g.f. is the same as the one given by V. Jovovic below except for the extra x^8.) - Petros Hadjicostas, Jul 14 2018
G.f.: (x^8/16)*(1/(1 - x)^8 + 4/(1 - x^8) + 5/(1 - x^2)^4 + 2/(1 - x^4)^2 + 4/(1 - x)^2/(1 - x^2)^3) = x^8*(2*x^10 - 3*x^9 + 7*x^8 - 6*x^7 + 7*x^6 - 2*x^5 + 2*x^4 - 2*x^3 + 5*x^2 - 3*x + 1)/(1 - x)^8/(1 + x)^4/(1 + x^2)^2/(1 + x^4). - Vladeta Jovovic, Jul 17 2002
a(n) = ((n+4)/32)*s(n,0,8) + ((n-4)/32)*s(n,4,8) + (48*C(n-1,7) + (n+1)*(n-2)*(n-4)*(n-6))/768, if n is even >= 8; a(n) = (48*C(n-1,7) + (n-1)*(n-3)*(n-5)*(n-7))/768, if n odd >= 8, where s(n,k,d)=1, if n == k (mod d), and 0 otherwise. - Vladimir Shevelev, Apr 23 2011
G.f.: k=8, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor((k+2)/2))/2. - Herbert Kociemba, Nov 05 2016 [edited by Petros Hadjicostas, Jul 18 2018]
From Petros Hadjicostas, Jul 14 2018: (Start)
The sequence (a(n): n >= 8) is the output sequence of Bower's "DIK[ 8 ]" (bracelet, indistinct, unlabeled, 8 parts) transform of 1, 1, 1, 1, ...
(End)
Extensions
Sequence extended and description corrected by Christian G. Bower
Name edited by Petros Hadjicostas, Jul 20 2018
Comments