A005522 a(n) = 1 + L(n) + F(2*n-1) with {L(n)}A000032)%20and%20F(2*n-1)">{n>=0} the Lucas numbers (A000032) and F(2*n-1){n>=0} the bisected Fibonacci numbers (A001519).
4, 3, 6, 10, 21, 46, 108, 263, 658, 1674, 4305, 11146, 28980, 75547, 197262, 515594, 1348477, 3528150, 9233244, 24167167, 63261114, 165604618, 433534041, 1134967250, 2971318756, 7778909811, 20365282518, 53316730378, 139584573093, 365436446014, 956723886540
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- W. E. Greig, Sums of Fibonacci Reciprocals, The Fibonacci Quarterly, Vol. 15, No. 1 (1977), pp. 46-48.
- W. E. Greig, On generalized G_{j,k} numbers, Fib. Quart., 16 (1978), 166-170.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,1,3,-1).
Programs
-
Magma
[1 + Lucas(n) + Fibonacci(2*n - 1): n in [0..30]]; // Vincenzo Librandi, Mar 08 2015
-
Maple
with(combinat): a:=proc(n) if n mod 2 = 0 then fibonacci(2*n)*(1+fibonacci(n-1))/fibonacci(n) else 2+fibonacci(2*n)*(1+fibonacci(n-1))/fibonacci(n) fi end: seq(a(n),n=1..32); # Emeric Deutsch, Apr 01 2005 A005522:=-(-3+9*z-z**2-10*z**3+4*z**4)/(z-1)/(z**2-3*z+1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation FL := proc(n) local a,p; a := (1+sqrt(5))/2; p := m -> a^m - (-a)^(-m); 1 + (p(n-1) + p(n+1) + p(2*n-1))/sqrt(5) end: A005522 := n -> FL(n): seq(round(evalf(A005522(n),32)), n=0..30); # Peter Luschny, Mar 09 2015
-
Mathematica
Table[1+Fibonacci[2n-1]+LucasL[n], {n, 0, 30}] (* Russell Jay Hendel, Mar 02 2015 *) (* modified by G. C. Greubel, Jan 01 2018 *) Series[1/(1-x)+ (2-x)/(1-x-x^2)+(1-2*x)/(1-3*x+x^2), {x, 0, 30}] (* Russell Jay Hendel, Mar 02 2015 *) LinearRecurrence[{5,-7,1,3,-1}, {4, 3, 6, 10, 21}, 31] (* Russell Jay Hendel, Mar 02 2015 *) CoefficientList[ Series[(4 - 17x + 19x^2 - 3x^3 - 2x^4)/(1 - 5x + 7x^2 - x^3 - 3x^4 + x^5), {x, 0, 30}], x] (* Russell Jay Hendel, Mar 02 2015 *)
-
PARI
\ps {31}; C(x) = 1/(1-x); L(x) = (2-x)/(1-x-x^2); B(x) = (1-2*x)/(1-3*x+x^2); A(x) = C(x)+L(x)+B(x); Ser(A(x),x) Vec(Ser(A(x),x)) \\ Russell Jay Hendel, Mar 02 2015
-
PARI
{lucas(n) = fibonacci(n+1) + fibonacci(n-1)}; for(n=0,30, print1(1 + fibonacci(2*n-1) + lucas(n), ", ")) \\ G. C. Greubel, Jan 01 2018
Formula
a(n) = ((sqrt(5)+5)/10)*(((3+sqrt(5))/2)^(n-1)) + ((5-sqrt(5))/10)*(((3-sqrt(5))/2)^(n-1)) + ((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n + 1. - Tim Monahan, Jul 23 2011
a(n) = 1 + L(n) + F(2*n-1), with L(n) the Lucas numbers, sequence A000032 and F(2n-1) the bisected Fibonacci numbers, sequence A001519. - Russell Jay Hendel, Mar 02 2015
a(n) = 5*a(n-1) - 7*a(n-2) + a(n-3) + 3*a(n-4) - a(n-5). - Russell Jay Hendel, Mar 02 2015
Sum_{n>=1} (a(2*n-1)/Fibonacci(4*n-2) - 1/phi) = A079586, where phi is the golden ratio (A001622) (Greig, 1977). - Amiram Eldar, Jan 29 2022
Extensions
Edited by Emeric Deutsch, Apr 01 2005
a(0), a(29), a(30) added by Russell Jay Hendel, Mar 02 2015
Name changed by Russell Jay Hendel, Mar 02 2015
Comments