cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A169873 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_2^n.

Original entry on oeis.org

6, 10, 18, 33, 53, 97, 172, 321, 603, 1153, 2227, 4353, 8553, 16897, 33491, 66561, 132519, 264193, 527183, 1052673, 2102943, 4202497, 8400192, 16793601, 33577603, 67141633, 134264067, 268500993, 536963592, 1073872897, 2147669011, 4295229441, 8590305319, 17180393473, 34360479823
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 10
        elif (n%2 == 0): return 2^n + 1 + 2^(n/2+2)
        elif ((floor(2^(n/2+1))%2 == 0) or (2^n-1).is_square()
            or (4*2^n-3).is_square() or (4*2^n-7).is_square()):
            if (frac(2^(n/2+1)) > ((sqrt(5)-1)/2)): return 2^n + 2*floor(2^(n/2+1))
            else: return 2^n + 2*floor(2^(n/2+1)) - 1
        else: return 2^n + 1 + 2*floor(2^(n/2+1))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169878 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n.

Original entry on oeis.org

8, 20, 48, 118, 306, 838, 2372, 6886, 20244, 60022, 178830, 534358, 1599374, 4791718, 14364057, 43072966, 129185618, 387499222, 1162397834, 3487020598, 10460762306, 31381768198, 94144406138, 282431662246, 847292291373, 2541872205622, 7625608530780, 22876811586838, 68630410502264
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 20
        elif (n%2 == 0): return 3^n + 1 + 4*3^(n/2)
        elif ((floor(2*3^(n/2))%3 == 0) or (3^n-1).is_square()
            or (4*3^n-3).is_square() or (4*3^n-7).is_square()):
            if (frac(2*3^(n/2)) > ((sqrt(5)-1)/2)): return 3^n + 2*floor(2*3^(n/2))
            else: return 3^n + 2*floor(2*3^(n/2)) - 1
        else: return 3^n + 1 + 2*floor(2*3^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A169881 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_5^n.

Original entry on oeis.org

12, 46, 170, 726, 3348, 16126, 79244, 393126, 1958714, 9778126, 48856074, 244203126, 1220842880, 6103828126, 30518276895, 152589453126, 762942946982, 3814705078126, 19073503797404, 95367470703126, 476837245549530, 2384185986328126, 11920929391810152, 59604645751953126, 298023226060613260
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if (n%2 == 0): return 5^n + 1 + 4*5^(n/2)
        elif ((floor(2*5^(n/2))%5 == 0) or (5^n-1).is_square()
            or (4*5^n-3).is_square() or (4*5^n-7).is_square()):
            if (frac(2*5^(n/2)) > ((sqrt(5)-1)/2)): return 5^n + 2*floor(2*5^(n/2))
            else: return 5^n + 2*floor(2*5^(n/2)) - 1
        else: return 5^n + 1 + 2*floor(2*5^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023

A262587 "Special" prime powers in Serre's sense.

Original entry on oeis.org

2, 3, 5, 7, 8, 13, 17, 31, 32, 37, 43, 73, 101, 128, 157, 197, 211, 241, 257, 307, 343, 401, 421, 463, 577, 601, 677, 757, 1123, 1297, 1483, 1601, 1723, 2048, 2187, 2551, 2917, 2971, 3137, 3307, 3541, 3907, 4357, 4423, 4831, 5113, 5477, 5701, 6007, 6163, 6481, 7057, 8011, 8101, 8191
Offset: 1

Views

Author

N. J. A. Sloane, Oct 21 2015

Keywords

Comments

See Hirschfeld, pp. 49-50 for precise definition.
By a theorem of Hasse-Weil and Serre, every (absolutely irreducible, smooth) genus 2 curve over GF(q) has cardinality at most q + 1 + 2*floor(2*sqrt(q)). This sequence consists exactly of the prime powers q (excluding 4 and 9) for which there does not exist any genus 2 curve over GF(q) with cardinality equal to q + 1 + 2*floor(2*sqrt(q)). - Robin Visser, Aug 26 2023

References

  • J. W. P. Hirschfeld, Linear codes and algebraic codes, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
  • J.-P. Serre, Oeuvres, vol. 3, pp. 658-663 and 664-669.

Crossrefs

Subsequence of A246655.

Programs

  • Sage
    for q in range(1, 1000):
        if Integer(q).is_prime_power():
            p = Integer(q).prime_factors()[0]
            if (not Integer(q).is_square()):
                if ((floor(2*sqrt(q))%p == 0) or (q-1).is_square() or
                    (4*q-3).is_square() or (4*q-7).is_square()): print(q) # Robin Visser, Aug 26 2023

Extensions

More terms from Robin Visser, Aug 26 2023
Showing 1-4 of 4 results.