A005531 Decimal expansion of fifth root of 2.
1, 1, 4, 8, 6, 9, 8, 3, 5, 4, 9, 9, 7, 0, 3, 5, 0, 0, 6, 7, 9, 8, 6, 2, 6, 9, 4, 6, 7, 7, 7, 9, 2, 7, 5, 8, 9, 4, 4, 3, 8, 5, 0, 8, 8, 9, 0, 9, 7, 7, 9, 7, 5, 0, 5, 5, 1, 3, 7, 1, 1, 1, 1, 8, 4, 9, 3, 6, 0, 3, 2, 0, 6, 2, 5, 3, 5, 1, 3, 0, 5, 6, 8, 1, 1, 4, 7, 3, 1, 1, 3, 0, 1, 1, 5, 0, 8, 4, 7, 3, 9, 1, 4, 5, 7
Offset: 1
Examples
1.148698354997035006798626946777927589443850889097797505513711118493603....
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
Crossrefs
Programs
-
Mathematica
RealDigits[N[2^(1/5),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *) RealDigits[Surd[2,5],10,120][[1]] (* Harvey P. Dale, May 08 2025 *)
-
PARI
{ default(realprecision, 20080); x=2^(1/5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005531.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009
Formula
Equals Product_{k>=0} (1 + (-1)^k/(5*k + 4)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 02 2022: (Start)
Equals (3/2)*Sum_{n >= 0} (1/(5*n+2) - 1/(5*n-3))*binomial(1/5,n). Cf. A002580.
Equals (5/4)*hypergeom([-1/5, -3/5], [7/5], -1). (End)
Extensions
More terms from Olaf Voß, Feb 13 2008
Comments