A005554 Sums of successive Motzkin numbers.
1, 2, 3, 6, 13, 30, 72, 178, 450, 1158, 3023, 7986, 21309, 57346, 155469, 424206, 1164039, 3210246, 8893161, 24735666, 69051303, 193399578, 543310782, 1530523638, 4322488212, 12236130298, 34713220977, 98677591278
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Robert Donaghey, Automorphisms on Catalan trees and bracketing, J. Combin. Theory, Series B, 29 (1980), 75-90.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 11.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 99.
Crossrefs
Programs
-
Mathematica
Rest[CoefficientList[Series[(x+x^2)*(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 21 2014 *)
-
Maxima
a(n):=(2*sum(binomial(n,j)*binomial(n-j+1,n-2*j+2),j,0,(n+2)/2))/n; /* Vladimir Kruchinin, Oct 04 2015 */
-
PARI
a(n) = sum(k=0, (n+2)/2, 2*(binomial(n,k)*binomial(n-k+1,n-2*k+2)/n)); vector(40, n, if(n==1, 1, a(n-1))) \\ Altug Alkan, Oct 04 2015
Formula
Inverse binomial transform of A014138: (1, 3, 8, 22, 64, 196, ...). - Gary W. Adamson, Nov 23 2007
D-finite with recurrence (n + 1)*a(n) = 2*n*a(n - 1) + (3*n - 9)*a(n - 2).
G.f.: (x+x^2)*M(x) where M(x)=(1 - x - (1 - 2*x - 3*x^2)^(1/2))/(2*x^2) is the g.f. for the Motzkin numbers A001006. - David Callan, Sep 25 2006
a(n) = (-1)^n*2*hypergeometric([2-n,5/2],[4],4), for n>1. - Peter Luschny, Aug 15 2012
a(n) ~ 2*3^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = (2*Sum_{j=0..(n+2)/2} (binomial(n,j)*binomial(n-j+1,n-2*j+2)))/n. - Vladimir Kruchinin, Oct 04 2015
Extensions
More terms from James Sellers, Jul 10 2000
Comments