A081741
Numbers k that divide A005554(k) (the sum of consecutive Motzkin numbers).
Original entry on oeis.org
1, 2, 3, 6, 9, 18, 27, 54, 81, 102, 126, 162, 189, 243, 369, 486, 567, 729, 1071, 1134, 1323, 1458, 1462, 1539, 2187, 2538, 2889, 3213, 4374, 4617, 6561, 7749, 8262, 8667, 13122, 14238, 15498, 19683, 24786, 27702, 28994, 32319, 34263, 39366, 40838
Offset: 1
-
s = {1, 2}; k1 = 1; k2 = 2; Do[k3 = (2*n*k2 + (3*n - 9)*k1)/(n + 1); If[Divisible[k3, n], AppendTo[s, n]]; k1 = k2; k2 = k3, {n, 3, 42000}]; s (* Amiram Eldar, Jun 28 2022 *)
A014138
Partial sums of (Catalan numbers starting 1, 2, 5, ...).
Original entry on oeis.org
0, 1, 3, 8, 22, 64, 196, 625, 2055, 6917, 23713, 82499, 290511, 1033411, 3707851, 13402696, 48760366, 178405156, 656043856, 2423307046, 8987427466, 33453694486, 124936258126, 467995871776, 1757900019100
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000(terms 0 to 200 computed by T. D. Noe)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Kevin Topley, Computationally Efficient Bounds for the Sum of Catalan Numbers, arXiv:1601.04223 [math.CO], 2016.
-
a014138 n = a014138_list !! n
a014138_list = scanl1 (+) a000108_list -- Reinhard Zumkeller, Mar 01 2013
-
a:=n->sum((binomial(2*j,j)/(j+1)),j=1..n): seq(a(n), n=0..24); # Zerinvary Lajos, Dec 01 2006
# Second program:
A014138 := series(exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*int(BesselI(0, 2*x)*exp(x), x) - 1/2), x = 0, 26):
seq(n!*coeff(A014138, x, n), n = 0 .. 24); # Mélika Tebni, Aug 31 2024
-
Table[Sum[(2k)!/k!/(k+1)!,{k,1,n}],{n,1,70}] (* Alexander Adamchuk, Jul 03 2006 *)
Join[{0},Accumulate[CatalanNumber[Range[30]]]] (* Harvey P. Dale, Jan 25 2013 *)
CoefficientList[Series[(1 - 2 x - (1 - 4 x)^(1/2))/(2 x (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *)
a[0] := 0; a[n_] := Sum[CatalanNumber[k], {k, 1, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 14 2017 *)
-
Vec((1-2*x-(1-4*x)^(1/2))/(2*x*(1-x))) \\ Charles R Greathouse IV, Feb 11 2011
-
from _future_ import division
A014138_list, b, s = [0], 1, 0
for n in range(1,10**2):
s += b
A014138_list.append(s)
b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 28 2016
Edited by
Max Alekseyev, Sep 13 2009 (including adding an initial 0)
A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
-
seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
A059346
Difference array of Catalan numbers A000108 read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 2, 3, 5, 3, 4, 6, 9, 14, 6, 9, 13, 19, 28, 42, 15, 21, 30, 43, 62, 90, 132, 36, 51, 72, 102, 145, 207, 297, 429, 91, 127, 178, 250, 352, 497, 704, 1001, 1430, 232, 323, 450, 628, 878, 1230, 1727, 2431, 3432, 4862, 603, 835, 1158, 1608, 2236, 3114
Offset: 0
Array starts:
1 1 2 5 14 42 132 429
0 1 3 9 28 90 297 1001
1 2 6 19 62 207 704 2431
1 4 13 43 145 497 1727 6071
3 9 30 102 352 1230 4344 15483
6 21 72 250 878 3114 11139 40143
15 51 178 628 2236 8025 29004 105477
36 127 450 1608 5789 20979 76473 280221
91 323 1158 4181 15190 55494 203748 751422
232 835 3023 11009 40304 148254 547674 2031054
603 2188 7986 29295 107950 399420 1483380 5527750
Triangle starts:
1;
0, 1;
1, 1, 2;
1, 2, 3, 5;
3, 4, 6, 9, 14;
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- Zhousheng Mei, Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024. See p. 36.
-
T := (n,k) -> (-1)^(n-k)*binomial(2*k,k)*hypergeom([k-n,k+1/2], [k+2], 4)/(k+1): seq(seq(simplify(T(n,k)), k=0..n), n=0..10);
# Peter Luschny, Aug 16 2012, updated May 25 2021
-
max = 11; t = Table[ Differences[ Table[ CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; Flatten[ Table[t[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011 *)
-
def T(n, k) :
if k > n : return 0
if n == k : return binomial(2*n, n)/(n+1)
return T(n-1, k) - T(n, k+1)
A059346 = lambda n,k: (-1)^(n-k)*T(n, k)
for n in (0..5): [A059346(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001
A080981
A014486-encodings of the trees whose interior zigzag-tree (Stanley's c) is branch-reduced (in the sense defined by Donaghey).
Original entry on oeis.org
0, 2, 10, 12, 44, 50, 52, 178, 180, 204, 210, 216, 228, 716, 722, 728, 740, 818, 820, 844, 866, 868, 872, 914, 920, 932, 2866, 2868, 2892, 2914, 2916, 2920, 2962, 2968, 2980, 3276, 3282, 3288, 3300, 3378, 3380, 3468, 3474, 3480, 3490, 3492, 3504, 3528, 3660
Offset: 0
- Robert Donaghey, Automorphisms on Catalan trees and bracketing, J. Combin. Theory, Series B, 29 (1980), 75-90.
- Antti Karttunen, Initial terms illustrated in positions 0, 1, 2, 3, 5, 6, 7, 11, 12, 15, 16, 18, 20, 29, 30, 32, ...
A102071
Pairwise sums of general ballot numbers (A002026).
Original entry on oeis.org
1, 3, 7, 17, 42, 106, 272, 708, 1865, 4963, 13323, 36037, 98123, 268737, 739833, 2046207, 5682915, 15842505, 44315637, 124348275, 349911204, 987212856, 2791964574, 7913642086, 22477090679, 63964370301, 182353459733, 520735012027, 1489362193002, 4266018891562, 12236183875496, 35142703099692, 101055137177563
Offset: 1
-
CoefficientList[Series[(4x(1+x))/(1-x+Sqrt[1-2x-3x^2])^2,{x,0,40}],x] (* Harvey P. Dale, Feb 26 2013 *)
-
a(n):=1/n*sum((binomial(j,n-1-j)+4*binomial(j,n-2-j)+3*binomial(j,n-3-j))*binomial(n,j),j,0,n); /* Vladimir Kruchinin, Mar 08 2016 */
-
z='z+O('z^66); Vec(4*z*(1+z)/(1-z+sqrt(1-2*z-3*z^2))^2) \\ Joerg Arndt, Mar 08 2016
A026269
a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n) and a(n) = Sum{T(k,k-1)}, k = 1,2,...,n, where T is array in A026268.
Original entry on oeis.org
1, 2, 4, 10, 25, 64, 166, 436, 1157, 3098, 8360, 22714, 62086, 170614, 471096, 1306374, 3636708, 10159590, 28473132, 80032638, 225562929, 637301652, 1804751718, 5121677512, 14563448593, 41487279622, 118389089432, 338381552294, 968627180975
Offset: 2
-
Drop[CoefficientList[Series[4x^2(1-x^2)/(1-x+Sqrt[1-2x-3x^2])^2, {x,0,30}],x],2] (* Harvey P. Dale, May 05 2011 *)
A091836
A triangle of Motzkin ballot numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 6, 6, 4, 1, 9, 13, 13, 10, 5, 1, 21, 30, 30, 24, 15, 6, 1, 51, 72, 72, 59, 40, 21, 7, 1, 127, 178, 178, 148, 105, 62, 28, 8, 1, 323, 450, 450, 378, 276, 174, 91, 36, 9, 1, 835, 1158, 1158, 980, 730, 480, 273, 128, 45, 10, 1, 2188, 3023, 3023
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
4, 6, 6, 4, 1;
9, 13, 13, 10, 5, 1;
21, 30, 30, 24, 15, 6, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows n = 0..150, flattened)
- M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
- Jean-Luc Baril and Paul Barry, Two kinds of partial Motzkin paths with air pockets, arXiv:2212.12404 [math.CO], 2022.
- Richard J. Mathar, Motzkin Islands: a 3-dimensional Embedding of Motzkin Paths, viXra:2009.0152, 2020.
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
Row sums are the Motzkin numbers (
A001006).
-
T[n_, m_] := If[n == m, 1, (-1)^m (m Sum[k (-1)^(n+k) Binomial[n+k-1, n-1] Sum[Binomial[j, -n+m-k+2j] Binomial[n-m, j], {j, 0, n-m}], {k, 1, n-m}])/ (n(n-m))];
Table[T[n, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
-
T(n,m):=if n=m then 1 else (-1)^m*(m*sum(k*(-1)^(n+k)*binomial(n+k-1,n-1)*sum(binomial(j,-n+m-k+2*j)*binomial(n-m,j),j,0,n-m),k,1,n-m))/(n*(n-m)); /* Vladimir Kruchinin, Aug 20 2012 */
A378801
G.f. A(x) satisfies A(x) = ( 1 + x/(1 - x*A(x)^(2/3)) )^3.
Original entry on oeis.org
1, 3, 6, 16, 48, 153, 511, 1761, 6219, 22383, 81804, 302766, 1132475, 4274166, 16256685, 62249167, 239772510, 928398831, 3611539758, 14107963848, 55318781982, 217652858539, 859027927911, 3400055112777, 13492710661658, 53673238384560, 213984657134418
Offset: 0
-
a(n, r=3, s=1, t=0, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
A247364
Riordan array (f(x), (f(x)-1)/f(x)) where f(x) = (1 + x - sqrt(1 - 2x - 3x^2))/(2*x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 4, 3, 1, 1, 9, 9, 6, 4, 1, 1, 21, 21, 15, 8, 5, 1, 1, 51, 51, 36, 22, 10, 6, 1, 1, 127, 127, 91, 54, 30, 12, 7, 1, 1, 323, 323, 232, 142, 75, 39, 14, 8, 1, 1, 835, 835, 603, 370, 205, 99, 49, 16, 9, 1, 1, 2188, 2188, 1585, 983
Offset: 0
Triangle begins:
1
1, 1
1, 1, 1
2, 2, 1, 1
4, 4, 3, 1, 1
9, 9, 6, 4, 1, 1
21, 21, 15, 8, 5, 1, 1
51, 51, 36, 22, 10, 6, 1, 1
Production matrix begins:
1, 1
0, 0, 1
1, 1, 0, 1
1, 1, 1, 0, 1
1, 1, 1, 1, 0, 1
1, 1, 1, 1, 1, 0, 1
1, 1, 1, 1, 1, 1, 0, 1
Showing 1-10 of 13 results.
Comments