A005558 a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides for Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, Eur. J. Comb. 61, 242-275 (2017)
- Sergi Elizalde, The degree of symmetry of lattice paths, arXiv:2002.12874 [math.CO], 2020.
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6. See Column 1 of Figure 5.
- Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
Crossrefs
Programs
-
Magma
[Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
-
Maple
A:= proc(n,x,y) option remember; local j, xpyp, xp,yp, res; xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]]; res:= 0; for j from 1 to 4 do xp:= xpyp[j,1]; yp:= xpyp[j,2]; if xp < 0 or xp > yp or xp + yp > n then next fi; res:= res + procname(n-1,xp,yp) od; return res end proc: A(0,0,0) := 1: seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
-
Mathematica
a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
-
PARI
a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))
-
Python
from sympy import ceiling as c, binomial def a(n): return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2) print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017
Formula
a(n) = C(n+1, ceiling(n/2))*C(n, floor(n/2)) - C(n+1, ceiling((n-1)/2))*C(n, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: (1/(4x^2))*((16*x^2-1)*(hypergeom([1/2, 1/2],[1],16*x^2)+2*x*(4*x-1)*hypergeom([3/2, 3/2],[2],16*x^2))-2*x+1). - Mark van Hoeij, Oct 13 2009
E.g.f (conjectured): BesselI(1,2*x)*(BesselI(0,2*x)+BesselI(1,2*x))/x. - Benjamin Phillabaum, Feb 25 2011
Conjecture: (2*n+1)*(n+3)*(n+2)*a(n) - 4*(2*n^2+4*n+3)*a(n-1) - 16*n*(2*n+3)*(n-1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017
Conjecture: (n+3)*(n+2)*a(n) - 4*(n^2+3*n+1)*a(n-1) + 16*(-n^2+n+1)*a(n-2) + 64*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} n!/(k!*k!*(floor(n/2)-k)!*(floor((n+1)/2)-k)!*(k+1)) (conjectured). - Roger Ford, Aug 04 2017
a(n) = Product_{k=3..n} (4*floor((k-1)/2) + 2) / (floor((k+2)/2)). - Roger Ford, Apr 29 2024
Comments