cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000891 a(n) = (2*n)!*(2*n+1)! / (n! * (n+1)!)^2.

Original entry on oeis.org

1, 3, 20, 175, 1764, 19404, 226512, 2760615, 34763300, 449141836, 5924217936, 79483257308, 1081724803600, 14901311070000, 207426250094400, 2913690606794775, 41255439318353700, 588272005095043500
Offset: 0

Views

Author

Keywords

Comments

Number of parallelogram polyominoes having n+1 columns and n+1 rows. - Emeric Deutsch, May 21 2003
Number of tilings of an hexagon.
a(n) is the number of non-crossing partitions of [2n+1] into n+1 blocks. For example, a[1] counts 13-2, 1-23, 12-3. - David Callan, Jul 25 2005
The number of returning walks of length 2n on the upper half of a square lattice, since a(n) = Sum_{k=0..2n} binomial(2n,k)*A126120(k)*A126869(n-k). - Andrew V. Sutherland, Mar 24 2008
For sequences counting walks in the upper half-plane starting from the origin and finishing at the lattice points (0,m) see A145600 (m = 1), A145601 (m = 2), A145602 (m = 3) and A145603 (m = 4). - Peter Bala, Oct 14 2008
The number of proper mergings of two n-chains. - Henri Mühle, Aug 17 2012
a(n) is number of pairs of non-intersecting lattice paths from (0,0) to (n+1,n+1) using (1,0) and (0,1) as steps. Here, non-intersecting means two paths do not share a vertex except the origin and the destination. For example, a(1) = 3 because we have three such pairs from (0,0) to (2,2): {NNEE,EENN}, {NNEE,ENEN}, {NENE,EENN}. - Ran Pan, Oct 01 2015
Also the number of ordered rooted trees with 2(n+1) nodes and n+1 leaves, i.e., half of the nodes are leaves. These trees are ranked by A358579. The unordered version is A185650. - Gus Wiseman, Nov 27 2022
The number of secondary GL(2) invariants constructed from n+1 two component vectors. This number was evaluated by using the Molien-Weyl formula to compute the Hilbert series of the ring of invariants. - Jaco van Zyl, Jun 30 2025

Examples

			G.f. = 1 + 3*x + 20*x^2 + 175*x^3 + 1764*x^4 + 19404*x^5 + ...
From _Gus Wiseman_, Nov 27 2022: (Start)
The a(2) = 20 ordered rooted trees with 6 nodes and 3 leaves:
  (((o)oo))  (((o)o)o)  (((o))oo)
  (((oo)o))  (((oo))o)  ((o)(o)o)
  (((ooo)))  ((o)(oo))  ((o)o(o))
  ((o(o)o))  ((o(o))o)  (o((o))o)
  ((o(oo)))  ((oo)(o))  (o(o)(o))
  ((oo(o)))  (o((o)o))  (oo((o)))
             (o((oo)))
             (o(o(o)))
(End)
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 94.

Crossrefs

Cf. A145600, A145601, A145602, A145603. - Peter Bala, Oct 14 2008
Equals half of A267981.
Counts the trees ranked by A358579.
A001263 counts ordered rooted trees by nodes and leaves.
A090181 counts ordered rooted trees by nodes and internals.

Programs

  • Haskell
    a000891 n = a001263 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 10 2013
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) / (Factorial(n) * Factorial(n+1))^2: n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    with(combstruct): bin := {B=Union(Z,Prod(B,B))} :seq(1/2*binomial(2*i,i)*(count([B,bin,unlabeled],size=i)), i=1..18) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    a[ n_] := If[ n == -1, 0, Binomial[2 n + 1, n]^2 / (2 n + 1)]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - Hypergeometric2F1[ -1/2, 1/2, 1, 16 x]) / (4 x), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ BesselI[0, 2 x] BesselI[1, 2 x] / x, {x, 0, 2 n}]]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticE[ 16 x] / (Pi/2)) / (4 x), {x, 0, n}]; (* Michael Somos, Sep 18 2016 *)
    a[n_] := (2 n + 1) CatalanNumber[n]^2;
    Array[a, 20, 0] (* Peter Luschny, Mar 03 2020 *)
  • PARI
    {a(n) = binomial(2*n+1, n)^2 / (2*n + 1)}; /* Michael Somos, Jun 22 2005 */
    
  • PARI
    a(n) = matdet(matrix(n, n, i, j, binomial(n+j+1,i+1))) \\ Hugo Pfoertner, Oct 22 2022
    

Formula

-4*a(n) = A010370(n+1).
G.f.: (1 - E(16*x)/(Pi/2))/(4*x) where E() is the elliptic integral of the second kind. [edited by Olivier Gérard, Feb 16 2011]
G.f.: 3F2(1, 1/2, 3/2; 2,2; 16*x)= (1 - 2F1(-1/2, 1/2; 1; 16*x)) / (4*x). - Olivier Gérard, Feb 16 2011
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x) * BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
a(n) = A001700(n)*A000108(n) = (1/2)*A000984(n+1)*A000108(n). - Zerinvary Lajos, Jun 06 2007
For n > 0, a(n) = (n+2)*A000356(n) starting (1, 5, 35, 294, ...). - Gary W. Adamson, Apr 08 2011
a(n) = A001263(2*n+1,n+1) = binomial(2*n+1,n+1)*binomial(2*n+1,n)/(2*n+1) (central members of odd numbered rows of Narayana triangle).
G.f.: If G_N(x) = 1 + Sum_{k=1..N} ((2*k)!*(2*k+1)!*x^k)/(k!*(k+1)!)^2, G_N(x) = 1 + 12*x/(G(0) - 12*x); G(k) = 16*x*k^2 + 32*x*k + k^2 + 4*k + 12*x + 4 - 4*x*(2*k+3)*(2*k+5)*(k+2)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
D-finite with recurrence (n+1)^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012
a(n) = A005558(2n). - Mark van Hoeij, Aug 20 2014
a(n) = A000894(n) / (n+1) = A248045(n+1) / A000142(n+1). - Reinhard Zumkeller, Sep 30 2014
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: 2F2(1/2,3/2; 2,2; 16*x).
a(n) ~ 2^(4*n+1)/(Pi*n^2). (End)
a(n) = A005408(n)*(A000108(n))^2. - Ivan N. Ianakiev, Nov 13 2019
a(n) = det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(n+j+1,i+1). - Benoit Cloitre, Oct 22 2022
a(n) = Integral_{x=0..16} x^n*W(x) dx, where W(x) = (16*EllipticE(1 - x/16) - x*EllipticK(1 - x/16))/(8*Pi^2*sqrt(x)), n=>0. W(x) diverges at x=0, monotonically decreases for x>0, and vanishes at x=16. EllipticE and EllipticK are elliptic functions. This integral representation as n-th moment of a positive function W(x) on the interval [0, 16] is unique. - Karol A. Penson, Dec 20 2023

Extensions

More terms from Andrew V. Sutherland, Mar 24 2008

A052174 Triangle of numbers arising in enumeration of walks on square lattice.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 6, 8, 3, 1, 20, 20, 15, 4, 1, 50, 75, 45, 24, 5, 1, 175, 210, 189, 84, 35, 6, 1, 490, 784, 588, 392, 140, 48, 7, 1, 1764, 2352, 2352, 1344, 720, 216, 63, 8, 1, 5292, 8820, 7560, 5760, 2700, 1215, 315, 80, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Examples

			First few rows:
    1;
    1   1;
    3   2   1;
    6   8   3  1;
   20  20  15  4  1;
   50  75  45 24  5 1;
  175 210 189 84 35 6 1;
  ...
		

Crossrefs

Cf. A005558 (first column), A005559, A005560, A005561, A005562.

Programs

  • Mathematica
    c = Binomial; T[n_, m_] /; EvenQ[n-m] := (k = (n-m)/2; c[n+1, k]*c[n, k] - c[n+1, k]*c[n, k-1]); T[n_, m_] /; OddQ[n-m] := (k = (n-m-1)/2; c[n+1, k]*c[n, k+1] - c[n+1, k+1]*c[n, k-1]); Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 13 2015, after Michel Marcus *)
  • PARI
    tabl(nn) = {alias(C, binomial); for (n=0, nn, for (k=0, n, if (!((n-k) % 2), kk = (n-k)/2; tnk = C(n+1,kk)*C(n,kk) - C(n+1,kk)*C(n,kk-1), kk = (n-k-1)/2; tnk = C(n+1,kk)*C(n,kk+1) - C(n+1,kk+1)*C(n,kk-1)); print1(tnk, ", ");); print(););} \\ Michel Marcus, Oct 12 2014

Formula

T(n, y) equals C(n+1,k)*C(n,k) - C(n+1,k)*C(n,k-1) if n-y = 2k, else if n-y = 2k+1 equals C(n+1,k)*C(n,k+1) - C(n+1,k+1)*C(n,k-1) (using article notation). - Michel Marcus, Oct 12 2014

A005560 Number of walks on square lattice. Column y=2 of A052174.

Original entry on oeis.org

1, 3, 15, 45, 189, 588, 2352, 7560, 29700, 98010, 382239, 1288287, 5010005, 17177160, 66745536, 232092432, 901995588, 3173688180, 12342120700, 43861998180, 170724392916, 611947174608, 2384209771200, 8609646396000, 33577620944400, 122041737663300, 476432168185575
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+3, Ceiling(n/2))*Binomial(n+2, Floor(n/2)) - Binomial(n+3, Ceiling((n-1)/2))*Binomial(n+2, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005560 := proc(n)
        wnprime(n,2) ;
    end proc:
    seq(A005560(n),n=2..20) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+3, Ceiling[n/2]] Binomial[n+2, Floor[n/2]]-Binomial[n+3, Ceiling[(n-1)/2]] Binomial[n+2, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+3,ceil(n/2))*binomial(n+2,floor(n/2)) - binomial(n+3,ceil((n-1)/2))*binomial(n+2,floor((n-1)/2))}
    

Formula

a(n) = C(n+3, ceiling(n/2))*C(n+2, floor(n/2)) - C(n+3, ceiling((n-1)/2))*C(n+2, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-1)*(n-2)*(2*n+1)*(n+5)*(n+4)*a(n) -4*n*(n+1)*(2*n^2+4*n+19)*a(n-1) -16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017

A093768 Positive first differences of the rows of triangle A088459, which enumerates symmetric Dyck paths.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 6, 1, 4, 15, 20, 20, 1, 5, 24, 45, 75, 50, 1, 6, 35, 84, 189, 210, 175, 1, 7, 48, 140, 392, 588, 784, 490, 1, 8, 63, 216, 720, 1344, 2352, 2352, 1764, 1, 9, 80, 315, 1215, 2700, 5760, 7560, 8820, 5292, 1, 10, 99, 440, 1925, 4950, 12375, 19800
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2004

Keywords

Comments

Suggested by Bozydar Dubalski (slawb(AT)atr.bydgoszcz.pl). Related to walks on a square lattice: main diagonal forms A005558, secondary diagonals form A005559, A005560, A005561, A005562, A005563.
Apparently row-reversed version of A052174. - R. J. Mathar, Feb 03 2025

Examples

			1;
1, 1;
1, 2, 3;
1, 3, 8, 6;
1, 4, 15, 20, 20;
1, 5, 24, 45, 75, 50;
1, 6, 35, 84, 189, 210, 175;
		

Crossrefs

Cf. A088459, A005558-A005562, A005563 (column 3), A005564 (column 4), A005565 (column 5), A005566 (row sums).

Programs

  • Maple
    A093768 := proc(n,k)
        if k = 0 then
            A088459(n,k);
        else
            A088459(n,k)-A088459(n,k-1);
        end if;
    end proc:
    seq(seq(A093768(n,k),k=0..n-1),n=1..10) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    T[n_, k_] := Binomial[n + 1, Ceiling[k/2]]*Binomial[n, Floor[k/2]] - Binomial[n + 1, Ceiling[(k - 1)/2]]*Binomial[n, Floor[(k - 1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 25 2017 *)
  • PARI
    {T(n,k) =binomial(n+1,ceil(k/2))*binomial(n,floor(k/2)) -binomial(n+1,ceil((k-1)/2))*binomial(n,floor((k-1)/2))}

Formula

T(n, k) = C(n+1, ceiling(k/2))*C(n, floor(k/2)) - C(n+1, ceiling((k-1)/2))*C(n, floor((k-1)/2)) for n>=k>=0.

A005559 Number of walks on square lattice. Column y=1 of A052174.

Original entry on oeis.org

1, 2, 8, 20, 75, 210, 784, 2352, 8820, 27720, 104544, 339768, 1288287, 4294290, 16359200, 55621280, 212751396, 734959368, 2821056160, 9873696560, 38013731756, 134510127752, 519227905728, 1854385377600, 7174705330000, 25828939188000, 100136810390400
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+2, Ceiling(n/2))*Binomial(n+1, Floor(n/2)) - Binomial(n+2, Ceiling((n-1)/2))*Binomial(n+1, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
  • Maple
    seq(binomial(n+1, ceil((n-1)/2))*binomial(n, floor((n-1)/2)) -binomial(n+1, ceil((n-2)/2))*binomial(n, floor((n-2)/2)), n=1..30); # Robert Israel, Oct 19 2014
  • Mathematica
    Table[Binomial[n+2, Ceiling[n/2]] Binomial[n+1, Floor[n/2]] - Binomial[n+2, Ceiling[(n-1)/2]] Binomial[n+1, Floor[(n-1)/2]], {n, 0, 200}] (* Vincenzo Librandi, Oct 17 2014 *)
  • PARI
    {a(n)=binomial(n+2,ceil(n/2))*binomial(n+1,floor(n/2)) - binomial(n+2,ceil((n-1)/2))*binomial(n+1,floor((n-1)/2))}
    

Formula

a(n) = C(n+1,ceiling((n-1)/2)) *C(n,floor((n-1)/2)) -C(n+1,ceiling((n-2)/2)) *C(n,floor((n-2)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: -(48*x^3-16*x^2-3*x+1)*EllipticK(4*x)/(12*Pi*x^4)+(4*x^2-9*x+1)*EllipticE(4*x)/(12*Pi*x^4)+1/(4*x^3)-1/(2*x^2) (using Maple's convention for elliptic integrals: EllipticE(t) = Integral_{s=0..1} sqrt(1 - s^2*t^2)/sqrt(1-s^2) ds, EllipticK(t) = Integral_{s=0..1} ((1-s^2*t^2)*(1-s^2))^(-1/2) ds). - Robert Israel, Oct 19 2014
Conjecture: -(n-1)*(2*n+1)*(n+4)*(n+3)*a(n) +4*(n+1)*(2*n^2+4*n+9)*a(n-1) +16*n*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017

A005561 Number of walks on square lattice. Column y=3 of A052174.

Original entry on oeis.org

1, 4, 24, 84, 392, 1344, 5760, 19800, 81675, 283140, 1145144, 4008004, 16032016, 56632576, 225059328, 801773856, 3173688180, 11392726800, 44986664800, 162594659920, 641087516256, 2331227331840, 9183622822400, 33577620944400, 132211882468575, 485773975404900
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+4, Ceiling(n/2))*Binomial(n+3, Floor(n/2)) - Binomial(n+4, Ceiling((n-1)/2))*Binomial(n+3, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005561 := proc(n)
        wnprime(n,3) ;
    end proc:
    seq(A005561(n),n=3..30) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+4, Ceiling[n/2]] Binomial[n+3, Floor[n/2]]-Binomial[n+4, Ceiling[(n-1)/2]] Binomial[n+3, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+4,ceil(n/2))*binomial(n+3,floor(n/2)) - binomial(n+4,ceil((n-1)/2))*binomial(n+3,floor((n-1)/2))}
    

Formula

a(n) = C(n+4, ceiling(n/2))*C(n+3, floor(n/2)) - C(n+4, ceiling((n-1)/2))*C(n+3, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-2)*(n-3)*(2*n+1)*(n+6)*(n+5)*a(n) - 4*n*(n+1)*(2*n^2+4*n+33)*a(n-1) - 16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017

A005562 Number of walks on square lattice. Column y=4 of A052174.

Original entry on oeis.org

1, 5, 35, 140, 720, 2700, 12375, 45375, 196625, 715715, 3006003, 10930920, 45048640, 164105760, 668144880, 2441298600, 9859090500, 36149998500, 145173803500, 534239596880, 2136958387520, 7892175863000, 31479019635375, 116657543354625, 464342770607625, 1726402608669375
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n+5, Ceiling(n/2))*Binomial(n+4, Floor(n/2)) - Binomial(n+5, Ceiling((n-1)/2))*Binomial(n+4, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
  • Maple
    wnprime := proc(n,y)
        local k;
        if type(n-y,'even') then
            k := (n-y)/2 ;
            binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ;
        else
            k := (n-y-1)/2 ;
            binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ;
        end if;
    end proc:
    A005562 := proc(n)
        wnprime(n,4) ;
    end proc:
    seq(A005562(n),n=4..30) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    Table[Binomial[n+5, Ceiling[n/2]] Binomial[n+4, Floor[n/2]]-Binomial[n+5, Ceiling[(n-1)/2]] Binomial[n+4, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
  • PARI
    {a(n)=binomial(n+5,ceil(n/2))*binomial(n+4,floor(n/2)) - binomial(n+5,ceil((n-1)/2))*binomial(n+4,floor((n-1)/2))}
    

Formula

a(n) = C(n+5, ceiling(n/2))*C(n+4, floor(n/2)) - C(n+5, ceiling((n-1)/2))*C(n+4, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-3)*(n-4)*(2*n+1)*(n+7)*(n+6)*a(n) - 4*n*(n+1)*(2*n^2+4*n+51)*a(n-1) - 16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017

A138350 Moment sequence of tr(A^2) in USp(4).

Original entry on oeis.org

1, -1, 3, -6, 20, -50, 175, -490, 1764, -5292, 19404, -60984, 226512, -736164, 2760615, -9202050, 34763300, -118195220, 449141836, -1551580888, 5924217936, -20734762776, 79483257308, -281248448936, 1081724803600, -3863302870000, 14901311070000, -53644719852000
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008

Keywords

Comments

If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2))^n] is the n-th moment of the trace of A^2. See A138351 for central moments.

Examples

			a(5) = -50 because E[(tr(A^2))^5] = -50 for a random matrix A in USp(4).
a(5) = A126120(5)*A138364(6)-A138364(5)*A126120(6) = 0*0-10*5 = -50.
		

Crossrefs

A signed version of A005558, which is the main entry for this sequence.

Programs

  • Mathematica
    a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)

Formula

a(n)=(1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y))^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy. a(n)=A126120(n)A138364(n+1)-A138364(n)A126120(n+1)
Conjectured e.g.f. BesselI[1,2x](BesselI[0,2x]-BesselI[1,2x])/x. - Benjamin Phillabaum, Feb 25 2011

A302181 Number of 3D walks of type abb.

Original entry on oeis.org

1, 5, 62, 1065, 21714, 492366, 12004740, 308559537, 8255788970, 227976044010, 6457854821340, 186814834574550, 5500292590186380, 164387681345290500, 4976887208815547640, 152378485941172462785, 4711642301137121933850, 146964278352052950118770, 4619875954522866283392300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    C := n-> binomial(2*n, n)/(n+1): # Catalan numbers
    A302181 := n-> add(binomial(2*n, k)*C(iquo(k+1, 2))*C(iquo(k, 2))*(2*iquo(k, 2)+1)*add((-1)^(k+j)*binomial(2*n-k, iquo(j,2)), j=0..2*n-k), k=0..2*n): seq(A302181(n), n = 0 .. 18); # Mélika Tebni, Nov 06 2024

Formula

a(n) = Sum_{k=0..2*n} binomial(2*n, k) * A005558(k) * A126869(2*n-k). - Mélika Tebni, Nov 06 2024

Extensions

a(8)-a(18) from Nachum Dershowitz, Aug 03 2020

A136046 Bisection of A138543.

Original entry on oeis.org

1, 3, 26, 345, 5754, 110586, 2341548, 53208441, 1276027610, 31930139670, 826963069140, 22035414489270, 601361536493340, 16749316314679500, 474777481850283240, 13665774112508864385, 398682239947705700730, 11770712453752716494910, 351240103372615793928900, 10581780543413346794758770
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Q2[n_] := Quotient[n, 2];
    A136046[n_] := Sum[(-1)^k*Binomial[2n, k] CatalanNumber[Q2[k+1]] CatalanNumber[Q2[k]](2*Q2[k]+1) Binomial[2n-k, Q2[2*n-k]], {k, 0, 2n + 1}];
    Array[A136046, 20, 0]  (* After Mélika Tebni,  Peter Luschny, Jun 30 2025 *)
  • Python
    from math import comb as C
    def CN(n): return (C(2*n, n)//(n+1)) # Catalan numbers
    def a(n): return sum((-1)**k*C(2*n, k)*CN((k+1)//2)*CN(k//2)*(2*(k//2)+1)*C(2*n-k, (2*n-k)//2) for k in range(2*n+1))  # Mélika Tebni, Jun 30 2025

Formula

a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2*n, k)*A005558(k)*A001405(2*n-k). - Mélika Tebni, Jun 30 2025

Extensions

a(16)-a(19) from Mélika Tebni, Jun 30 2025
Showing 1-10 of 14 results. Next